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Abstract

Urban heat island (UHI) characteristics and mitigation strategies for dryland cities differ from those
for wetter urban regions. Whereas the latter typically see daytime surface UHISs, the rapid heating and
cooling of deserts surrounding arid cities often produces daytime ‘urban cool islands’ and nighttime
UHIs. Degrees of aridness, extent of vegetation, elevation, latitude, humidity, topography, and typical
building types are likely to influence dryland UHI dynamics. This study analyzes variations in thermal
effects at multiple scales for 10 dryland urban regions representing varied geographies worldwide with
anaim to establish a broader understanding of the spectrum of UHI patterns in dryland cities. We
used GIS to assemble daytime and nighttime satellite imagery, determined land surface temperature
and vegetation at a 30-meter scale, and analyzed typical neighborhood-scale examples of six land cover
types in each region. The 10 regions showed large variation in thermal effects. We found a strong
daytime surface UHI in only one. Nighttime heat islands were more pronounced. However, all regions
showed strong small-scale variation in temperature, averaging a 12.3 °C difference between mean top-
quintile and bottom-quintile surface temperatures. Samples of urban forest landscapes cooled
daytime temperatures an average of 5.6 °C compared to metro averages. Irrigated lawn and multistory
building land cover samples also had a substantial cooling effect. Xeriscaped landscapes amplified
daytime heating. Our results indicate that UHIs for dryland cities are unlikely to be reduced by
xeriscape strategies, but that shade-maximizing urban forestry and built form hold promise to reduce
heat islands.

1. Introduction

Urban heat islands (UHIs) often form in temperate climates as buildings and paved surfaces absorb and slowly
release solar radiation during the daily cycle, making cities warmer than surrounding vegetated rural landscapes
(e.g. Schatz and Kucharik ). However, an emerging literature indicates that UHI dynamics are more complicated
for dryland cities, a category that includes arid, semi-arid, and Mediterranean climates (Connors et al 2013,
Nassar et al 2016). While there are a multitude of studies that focus on temperate regions there are less that focus
on dryland regions and even fewer that do a global comparison.

This study analyzes how urban heat island effects vary across 10 dryland urban regions representing a range
of geographical environments worldwide. We determine differences between day and night mean urban and
rural temperatures derived from satellite imagery, consider variation of temperatures at a detailed (30-meter)
scale within the urban area, and correlate land surface temperature with vegetation. To assess the impact that
certain built landscape types have on surface temperatures, we analyze representative samples of six land covers
in each region—urban forest, irrigated turf and tree, xeriscape, hardscape, urban multistory, and undeveloped
—and compare their temperature with the urban and rural mean. These methods, described further below,
allow us to draw conclusions related to ways that urban temperatures, vegetation, and built form vary across a
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range of dryland urban regions, and potentially how urban heating and UHIs can be mitigated through
landscape planning.

Urban heat islands are the net result of several physical processes that include radiative, thermal,
aerodynamics and moisture built form, materials, and vegetation. These processes include the absorption of
sunlight and re-radiation of heat by dark surfaces such as pavements and roofs; the reflectance of sunlight by
light-colored materials; shading produced by trees and buildings; and evapotranspiration from plants which
cools the surrounding air. The configuration of land covers within the urban environment influences these
dynamics (Middel et al 2014, Song and Wang 2015).

UHIs can be identified through satellite land surface temperature measurements or by onsite measurements
at 2-m pedestrian or tree-canopy level. They can also be modeled with computer software. Starting in the 1970s
researchers showed that dark surfaces tend to produce higher air and surface temperatures than the urban mean
(Oke 1973), while green spaces tend to produce lower temperatures (Spronken-Smith and Oke 1998, Onishi et al
,Chow et al2011). Temperature differences between natural and anthropogenic land covers can vary by up to
5 °C for adjacent sites and up to 9 °C between urban core and rural areas (Imoff et al 2010).

Although two-meter air temperatures may be most relevant for human comfort, surface temperatures are
more frequently studied owing to the easy availability and comprehensiveness of satellite data. Surface
temperatures tend to show heating more strongly than air temperatures. They generally correlate with air
temperatures but do not directly correspond due to atmospheric mixing and materials properties as well as
technical measurement issues (Zhou etal 2019).

Within the past decade several large-scale studies have documented a daytime “‘urban cool island’ effect for
many dryland cities as surrounding landscapes with sparse xeric vegetation, grasses, and dry soils warm more
rapidly than urban surfaces (Imhoff et al 2010, Peng et al 2014, Chakraborty and Lee 2019). Surrounding deserts
then cool more rapidly at night than urban pavement and rooftops, leading to nighttime UHIs. However, the
case study literature suggests variability in this effect. Degrees of aridness, extent of vegetation, elevation,
latitude, humidity, and typical building types are likely to influence dryland urban heat island behaviors (Zhou
etal 2014, Heinl et al, He et al).

Research shows the importance of vegetated spaces such as lawns, parks, street trees, and green roofs in
reducing dryland UHIs through evapotranspiration and shade (Bowler et al 2010, Rchid 2012, Wang et al 2016).
However, conventional turf-and-tree landscapes require consistent irrigation. Xeric landscapes using native
and/or drought tolerant species use less water, but are likely to have less cooling effect since xeric species tend to
have thin foliage and minimize evapotranspiration (Connors et al 2013).

High-density urban parcels with buildings that create shade can reduce local heating (Emmanuel and
Fernando 2007, Norton et al 2015, Nassar et al 2016, 2017). Street width, building height, and tree canopy level
all affect this dynamic (Coseo and Larsen 2014). Urban heat islands in most climates are prominent at night
because street canyons tend to trap heat in addition to urban materials often experiencing a slower nighttime
cooling rate than natural surfaces (Connors et al 2013).

2. Methodology

We investigated UHI behavior for dryland cities at three scales: the metropolitan region, the neighborhood, and
the 30-meter pixel scale available from satellite imagery. We chose a global convenience sample of 10 large
dryland urban regions selected to reflect a diversity of dryness, seasonality, urban growth, elevation, and built
form. These regions include hyper-arid, arid, Mediterranean, monsoonal, and dry high-altitude climates, but all
have an overall water deficit throughout the year and long annual periods with no rain. Eight are located in the
northern hemisphere, and two in the southern. We defined urban boundaries for each metropolitan area using
city boundaries from Open Street Map (https://www.openstreetmap.org). Surrounding each region we
established a 20 kilometer-wide rural buffer for comparison purposes as can be seen in figure 3. To enhance
uniformity, we removed water bodies, as well as areas within 5 km of water bodies for all regions as it has been
found that marine influences can vary influence in degree of extent inland (Efthymiadis and Jones ), Elevations
exceeding 500 feet of the regional mean were also masked out.

We acquired Landsat 8 OLI and ASTER data (30-meter resolution) for daytime and nighttime hot-season
dates, and derived land surface temperature (LST) from these sources (table 1). Google Earth Engine, and QGIS
were utilized to acquire and process the imagery to Land surface temperature We sampled daytime data near 11
AM local time, and nighttime data near 10 PM. Areas that required two scenes to cover metro areas were
mosaiced if scenes were captured on same day (i.e. same path for Landsat), but scenes from different Landsat
rows were not mosaiced if they were in different rows due to the temporal differences in scene capture time. For
regions with monsoonal influences, we chose dates close to the end of the dry season. At the metropolitan scale
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Table 1. Dates and source of thermal imagery.
City Day Night DayImage Night Image
Cairo 07/29/2017 08/08/2015 Landsat 8 OLI Landsat 8 OLI
Delhi 05/15/2017 08/04,/2017 Landsat 8 OLI ASTER
Dubai 07/28/2016 06/30/2017 Landsat 8 OLI ASTER
LaPaz 11/24/2017 07/07/2018 Landsat 8 OLI ASTER
Lima 05/10/2017 05/07,/2018 Landsat 8 OLI ASTER
Los Angeles 08/09/2016 07/08/2016 Landsat 8 OLI Landsat 8 OLI
Madrid 07/17/2017 06/25/2916 Landsat 8 OLI Landsat 8 OLI
Mexico City 05/28/2016 05/17/2017 Landsat 8 OLI Landsat 8 OLI
Tehran 06/23/2017 06,/09/2016 Landsat 8 OLI ASTER
Phoenix 08/15/2017 08/12/2016 Landsat 8 OLI Landsat 8 OLI

we extracted the mean temperatures of the entire region, mean temperatures of upper and lower quintiles of 30-
meter pixels, and mean temperature of the surrounding rural areas.

We employed a broadly used method that from the Landsat Handbook for LST retrieval. In this method,
only TOA (Top of Atmosphere) radiance and NDVI (Normalized Difference Vegetation Index) are required.
According to the handbook, the TOA radiance of thermal infrared band is converted to TOA (or at-sensor)
brightness temperature based on the formula (equation (1)) (Chander et al 2009, Jimenez- Munoz et al 2014):

Tsensor = K1/ In(K2/(LX + 1)) (1)

where Tsensor is the at-sensor brightness temperature in Kelvin (K) and L is the TOA radiance in W/m,Srum.
For Landsat-8 TIRS, K1is 774.89 W m 2 Sryum) and K2 is 1321.08 K for band 10 (USGS, n.d.).

The following equation (equation (2)) calculates the LST based on the brightness temperature obtain
previously (Artis and Carnahan 1982).

LST = Tsensor/((1 + X\ * Tsensor/a) * In (¢)) 2)

where LST is the land surface temperature in Kelvin (K), A is the wavelength in meters and = 1.438 x 1072 mK.
represents the surface emissivity which differs from various land cover types (Shen et al 2016). For ¢, water
(NDVI < 0) was assigned a value 0f 0.9925, urban impervious areas and bare soil (0 = <NDVI < 0.15) were
assigned a value 0£0.923, and vegetation (NDVI > 0.727) was assigned a value of 0.986. Otherwise, there was a
modeling relationship with the NDVI values through the following equation:

£ = 1.0094 + 0.047 * In (NDVI)) 3)

For ASTER imagery we used the same conversion to surface brightness temperature as Landsat. The imagery
was then corrected to surface temperature using band 13 (10.6 micrometers) because of the thermal bands
available for ASTER, band 13 lined up closest in spectral wavelength designation as that of Landsat 8 OLI Band
10.

LST = band13/(1.0094 + 10.6 * band 13)/
14388 * In (emissivity)) 4

To analyze neighborhood-scale effects, we used Google Earth Engine to visually identify representative
samples exceeding one square kilometer in size of six different land cover types (see figure 1). We elected to use
this domain expert approach to ensure near 100% accuracy, rather than employing a machine learning
classification algorithm such as the World Urban Database Access Portal Tools (Verdonck et al 2019) to quickly
classify such areas with moderate accuracy (70%—-85%). Our approach was similar to that used by the
HERCULES model for classifying urban patches (Cadenasso et al 2007). The selected land covers were:

+ Urban Multistory: urban neighborhoods with closely spaced buildings of three stories or more, able to cast
substantial amounts of shade

+ Irrigated Turfand Tree: large areas of turfgrass with scattered trees (less than 25% tree canopy), including
parks, golf courses, playing fields, and residential neighborhoods with sizable yards

+ Xeriscape: developed areas with sparse, native and/or drought-tolerant vegetation, typically also including
substantial amounts of bare dirt

+ Hardscape: low-rise urban environments with extensive impermeable surfaces such as streets, parking lots,
and rooftops
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Urban Multistory (Los Angeles) Irrigated Turf and Tree (Dubai)
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Figure 1. Six neighborhood scale land cover types.

+ Urban forest: areas with dense tree canopies (native and non-native) (>>70%), typically found along waterways

or in densely vegetated parks

+ Unbuilt: undeveloped land areas within or external to the urban area
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Figure 2. Daytime and nighttime surface UHI magnitudes for 10 dryland cities.

To assess spillover temperature effects, we also formed one-kilometer buffers around these built landscape
samples and analyzed average temperature differences between the six land cover types, surrounding buffer
areas, and the urban mean.

3. Results

3.1. Metropolitan Scale

At the metropolitan scale, we found that only one of the ten regions (Mexico City) had an average daytime
surface temperature substantially higher (>2 °C) than the surrounding rural. mean, in the traditional urban heat
island pattern. Two of the regions (Dubai and Madrid) showed substantial daytime urban cool island effects
(temperatures >2 °C below the rural mean). Most of the regions had average temperatures close to the rural
mean, showing little overall daytime UHI effect (See figure 2). At night three of the 10 regions had substantial
(>2 °C) UHI effects (Dubai, Tehran, and Madrid), while five others had lesser effects of around 1 °C. Delhi
exhibited no urban heat island pattern (<0.1 °C). Figure 3 presents a comparison of daytime and nighttime
urban heatisland intensities. In all cases the standard deviation and range of temperatures were lower at night for
both urban and rural areas. We assume that this is a result of rapid daytime heating of certain landscape surfaces,
and more gradual diffusion of thermal energy at night (Spronken-Smith and Oke 1998).

Although some regions showed little overall surface UHI, particular locations within them experienced
strong heating and cooling during both day and night (Tables 3 and 4). The hottest quintile of 30 meter pixel
surface temperatures was on average 5.2 °C warmer during daytimes than the mean for rural lands. Meanwhile,
the coolest quintile of daytime surface temperatures was an average of 4 °C cooler than the mean of non-urban
land (see tables 1 and 2). The mean difference across these 10 regions between the hottest and coolest quintiles of
surface pixel temperature was 12.3 °C.

Many regions showed weak 30-meter correlations between vegetation and lower surface temperatures.
However, the only statistically significant relationship was for rural areas near Cairo during the daytime. This
correlation is likely the product of dense agricultural development of the Nile River Delta.

3.2. Neighborhood scale

At the neighborhood scale, different types of land cover appear to vary strongly in surface temperature compared
to the mean for these regions (Figure 4). Our sample of urban forest land cover produced the greatest daytime
temperature reduction, an average decrease of 5.6 °C. In Phoenix, Arizona, the urban forest sample was 16.5 °C
cooler than the metro mean during daytime (Table 5). A surrounding one-kilometer buffer area around each
urban forest sample also experienced spillover cooling effects, with an average temperature reduction of 1.7 °C.
These cooling effects of urban forest land covers relative to the regional mean disappeared at night (Table 6).
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Figure 3. Sample daytime and nighttime urban heat island maps (Madrid). Caption: Madrid Urban with 20 km buffer surrounding
urban metro boundary. Thinly vegetated dry land outside Madrid warms more rapidly during the day than urban landscapes. At night
the city retains heat while rural areas cool.
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Figure 4. Daytime temperature variation by sample neighborhood-scale land cover for 10 regions Caption: Different sample
neighborhood-scale land cover types have large daytime temperature differences (°C). Degree of variation differs by region. Urban
forests were generally coolest, and unbuilt and hardscaped land covers the hottest.
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Table 2. Average top and bottom quintile daytime temperatures compared with metro and rural means (°C).
Rural Metro Upper 20% of 30 m Lower 20% of 30 m
Cities Mean (°C) Mean (°C) pixels (°C) pixels (°C) Difference (°C)
Cairo 38.9 38.8 44.0 32.3 11.7
Delhi 38.4 38.4 43.0 32.6 10.4
Dubai 49.4 46.4 50.1 40.3 9.8
LaPaz 30.9 32.0 37.5 28.7 8.8
Lima 26.3 26.8 29.2 20.2 9.0
Los Angeles 36.6 37.1 42.0 26.9 15.1
Madrid 41.7 39.5 46.2 33.3 12.9
Mexico City 28.9 32.3 38.2 18.6 19.6
Tehran 43.8 39.8 45.7 32.8 12.9
Phoenix 40.6 44.3 52.5 38.8 13.7
Average 37.6 37.5 42.8 30.5 12.3
Table 3. Average top and bottom quintile night temperatures compared with metro and rural means.
Rural Metro Upper 20% Lower of 30 m 20% of pixels 30 m

Cities Mean (°C) Mean (°C) pixels(°C) pixels(°C) Difference (°C)
Cairo 25.6 26.5 28.3 24.8 3.5
Delhi 24.2 25.6 28.4 22.7 5.7
Dubai 24.2 26.2 29.6 23.1 6.5
LaPaz 2.5 3.0 4.5 —3.2 7.7
Lima 15.6 14.6 17.2 12.8 4.4
Los Angeles 16.4 17.7 21.5 14.7 6.8
Madrid 21.3 23.4 26.4 17.7 8.7
Mexico City 16.3 16.9 20.1 10.8 9.3
Phoenix 24.4 25.8 29.0 22.7 6.3
Tehran 19.5 22.6 24.8 19.8 5.0
Average 19.0 20.2 23.0 16.6 6.4

Our irrigated turf and tree sample land covers also produced daytime cooling effects in all cities, an average
temperature reduction of 2.0 °C from the mean. The spillover cooling impact was weaker than for urban forests,
and nighttime temperature differences from the urban mean were negligible.

Urban multistory land cover samples were cooler than the daytime mean in 7 of the 10 metro regions, with
an average temperature reduction of 1.0 °C (Table 7). The strongest cooling effects were found in Dubai, Cairo,
and Lima. Cooling effects disappeared for multistory samples in most regions at night. For Dubai and La Paz,
urban multistory samples had substantially warmer nighttime temperatures than the urban average (Table 8).
However, these may have risen for contextual reasons: Dubai’s downtown is relatively near the Persian Gulf,
which likely moderates temperatures, and La Paz is at very high elevation, which leads to very rapid cooling of
unbuilt areas and alow mean regional nighttime temperature.

Xeriscape land cover samples were generally warmer than the average daytime metro temperature—an
average of 1.8 °C. In five of the 10 regions, the sample of this land cover type was more than 2.4 °C above the
metro mean. However, there were few spillover effects to surrounding areas. At night xeriscape samples showed
no difference from regional average temperatures. Samples of unbuilt areas within the metro regions were also
typically warmer than the mean for these 10 dryland urban areas—an average of 1.4 °C. At night these samples
were cooler than the metro mean—an average of 0.5 °C. These findings are to be expected, as these samples
mirror rural arid landscapes with rapid daytime heating and nighttime cooling. We found the unbuilt sample for
Mexico City to be much cooler than in the other regions during the daytime, which may be due to more
extensive vegetation or topography.

4, Discussion

Our analysis confirms that dryland urban regions have substantially different surface UHI characteristics than
the literature has shown for wetter, temperate regions. Daytime urban cool islands are likely due to the rapid
heating characteristics of surrounding arid terrain. But this phenomenon shows high variability. Modest
nighttime UHIs usually occur since rural arid landscapes cool more rapidly than urban ones. The large variation
in metro-scale thermal effects between these 10 dryland regions can most likely be explained by factors such as
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Table 4. 10 Dryland urban regions compared.

Pop. Average hottest month Average daytime temp. diff. Average nighttime temp. diff.
Urban region Climate (koppen) Precip. (mm) Elev (m) (mil.) Pop. Density (per./ km?) humidity urban/rural urban/rural
Cairo Hot Desert (BWh) 24.7 25 20.4 38 636 58% 0.1°C 0.9 °C
Delhi Warm Steppe (BSh) 800 230 26.5 17 857 33% 0.0 1.4
Dubai Hot Desert (BWh) 201 10 5.6 1,363 56% -3.0 2.0
LaPaz Subtropical High- 564 3,640 2.7 5,720 43% 1.1 0.5
land (CWc¢)

Lima Mild Desert (BWn) 16 0-1,550 12.1 15125 85% 0.5 —1.0

Los Angeles Mediterranean (Csb) 384 80 18.7 14,363 73% 0.5 1.3
Madrid Mediterranean (Csa) 436 730 6.7 11 093 35% —-2.2 2.1
Mexico City Subtropical Highland (Cwb) 820 2,450 20.9 14 074 43% 3.3 0.6
Phoenix Hot Desert (BWH) 200 300 4.7 3,500 32% 0.5 1.4
Tehran Cool Semiarid (BSK) 220 1,650 8.7 11918 31% —0.8 3.1

Gray = Temperature differences over 2 °C.
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Table 5. Daytime urban forest covers surface temperature compared to
metro mean of entire area.
Metro Urban forest <1 km from veg.
mean versus Mean of versus mean of
Region temp. (°C) metro area (°C) metro area (°C)
Cairo 38.8 —55 —0.6
Delhi 38.4 ~18 -2.0
Dubai 46.4 —52 0
LaPaz 32.0 —3.6 -1.3
Lima 26.8 —24 -19
Los Angeles 37.1 —4.2 —0.9
Madrid 39.5 —6.0 —0.2
Mexico City 323 —3.6 +0.5
Phoenix 44.3 —16.5 —8.7
Tehran 39.8 —7.0 —2.2
AVERAGE 37.5 —5.6 -17
Caption: Urban forests are >2 °C cooler (dark gray) than the urban average
for 9 of 10 dryland regions studied, with cooling extending 1 km beyond
borders of vegetated space in some cities.
Table 6. Nighttime urban forest temperature compared to metro mean.
<1 km from
Metro Urban forest veg. versus
mean versus mean of mean of metro
Region temp. (°C) metro area (°C) area (°C)
Cairo 26.5 —0.8 —0.5
Delhi 25.6 —0.6 0.5
Dubai 26.2 —0.7 —-1.9
LaPaz 3.0 1.0 0.8
Lima 14.6 0.1 0.1
Los Angeles 17.7 -0.7 0.8
Madrid 23.4 1.4 1.5
Mexico City 16.9 1.4 1.8
Phoenix 25.8 —0.1 —0.6
Tehran 22.6 0.2 0.1
AVERAGE 20.2 0.1 0.3
Table 7. Temperatures by land surface type within dryland urban regions (Daytime).
Hard-
Metro Urban Irrigated turf scape ver-
mean Forest and tree ver- Urban multis- sus Xeriscape/dirt Unbuilt
temp. versus sus tory versus mean versus versus
Region (°C) mean (°C) mean (°C) mean (°C) (°C) mean (°C) mean (°C)  Rural (°C)
Cairo 38.8 —5.5 -3.3 -3.0 1.4 -0.1 0 38.9
Delhi 38.4 —-1.8 —2.4 —0.6 2.2 0.2 0.8 38.4
Dubai 46.4 —5.2 -3.6 —4.3 3.0 0.4 2.0 49.4
LaPaz 32 —3.6 4.2 —0.4 1.4 4.2 0.5 30.9
Lima 26.8 —2.4 -2.9 —2.3 —0.2 -0.3 1.3 26.3
L.A. 37.1 —4.2 -3.6 -0.5 -2.1 2.4 0.3 36.6
Madrid 39.5 —6.0 —34 0.7 —0.2 2.7 2.6 41.7
Mexico City 323 —3.6 -1.9 —0.4 0.6 2.9 —4.3 28.9
Phoenix 44.3 —16.5 -0.5 2.9 1.5 2.9 5.0 43.8
Tehran 39.8 -7.0 —4.9 -1.9 2.4 1.6 5.6 40.6
AVERAGE 37.5 —5.6 —2.2 —-1.0 1.0 1.8 1.4

Caption: Urban forests, irrigated turf and tree landscapes, and some multistory built landscapes have more than 2 °C cooler surface
temperatures (light gray) than the mean during daytime for the sampled land covers. Hardscaped, xeriscaped, and unbuilt landscape surface
temperatures are often substantially hotter (dark gray) than the mean.
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Table 8. Temperatures by Land Surface Type within Dryland Urban Regions (Nighttime).
Hard-
Metro Urban Irrigated turf scape ver-
mean Forest and tree ver- Urban multis- sus Xeriscape/dirt Unbuilt
temp. versus sus tory versus mean versus versus
Region (°C) mean (°C) mean (°C) mean (°C) (°C) mean (°C) Mean (°C)  Rural (°C)
Cairo 26.5 —0.8 0.5 1.2 1.4 0.3 —0.2 25.6
Delhi 25.6 —0.6 0.5 2.1 2.2 2.0 —1.1 24.2
Dubai 26.2 —0.7 —0.2 3.5 3.0 —0.3 —2.2 24.2
LaPaz 3.0 1.0 —0.1 4.0 1.4 —0.6 3.8 2.5
Lima 14.6 0.1 —0.2 0 —0.2 —0.3 —0.1 15.6
Los Angeles 17.7 —0.7 —0.4 0.8 —2.1 —0.3 —0.6 16.4
Madrid 23.4 1.4 —1.5 1.5 —0.2 —0.4 —3.4 21.3
Mexico City 16.9 1.4 0.7 1.1 0.6 0.8 0.1 16.3
Phoenix 25.8 —0.1 —0.1 —1.8 1.5 —0.8 1.0 24.4
Tehran 22.6 0.2 1.2 —0.4 24 1.4 —2.7 19.5
AVERAGE 20.2 0.1 0.0 1.2 1.0 0.2 —0.5

Caption: Differences are not as pronounced at night. In some regions urban buildings and pavement retain substantial surface heat at night
(dark gray). Although frequently hotter during the day in arid regions, unbuilt lands are often cooler at night (light gray) than the regional
mean temperature.

degree of aridity, extent of vegetation, elevation, humidity, latitude, topography, and typical building types.
However, interactions between these factors are likely complex and a large sample would be required to
statistically tease out individual variables responsible for such differences, if that in fact could be done. However,
even though surface UHIs may not exist for dryland urban regions or may be mild, our analysis shows strong
local variation in temperature at the 30-meter scale. This variation is likely due to dark surface materials such as
asphalt absorbing solar radiation, light colored surfaces reflecting solar energy, the production of shade by
structures, or vegetative cooling. These variations will affect human health and comfort, building cooling loads,
and social equity considerations.

The dryland metro areas studied here do not show strong correlations between vegetation and temperature.
However, overall amounts of vegetation (especially tree canopy) are low in most of these regions, and it is
possible that with higher levels of vegetation greater correlations would be found. When we examined sample
neighborhood-scale patches of urban forest, we found large cooling effects. One implication is that ambitious
regional urban forestry programs might indeed help cool metro areas. However, such programs would need to
take water use for irrigation into account. Potentially, low-water tree species could be found that would yield
significant cooling when planted citywide. More investigation into low-water, shade-producing vegetation as
well as optimal configuration of green spaces for cooling would be desirable.

The sample irrigated turf and tree landscapes we examined had somewhat smaller but still sizable reductions
in daytime surface temperature compared to metro means. Use of this landscape strategy would need to be
balanced with water consumption. Turfgrass landscapes and water-intensive broadleaf trees are also known to
increase local evapotranspiration and humidity, which can cool local landscapes but also traps heat at night.

Xeriscaped landscapes showed little ability to cool urban regions, and the samples we examined were in fact
hotter than the daytime metro mean in most regions. Although these landscapes may be desirable for other
reasons such as habitat, aesthetic value, and water conservation, they will probably not be able to help reduce
urban heat islands.

Shade-producing built form shows potential to reduce daytime urban heating while improving micro-scale
human comfort by providing shaded walkways, sidewalks, and courtyards. The samples of this land cover that
we examined were 1 °C cooler than metro means, even though their building types and surface materials were
usually conventional in nature. Architects, urban designers, and engineers seeking to maximize the shade cast by
structures as well as light-colored roof and paving materials might be able to achieve even stronger daytime
cooling effects from urban multistory development.

Our study has limitations that should be mentioned. The spatial resolution of Landsat and ASTER thermal
imagery is still relatively coarse, yielding 900 m” pixels. Unfortunately, higher spatial resolution thermal imagery
is not available. Also, although we attempted to remove noise in the data caused by water bodies, proximity to
coasts, and elevation changes, we were not able to do this completely. Even removing a 5 km buffer next to
shorelines from analysis in places such as Dubai, Lima, and Los Angeles, urban temperatures were undoubtedly
affected to some extent by maritime influences.
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Within the neighborhood-scale analysis some challenges arose with consistencies between on-the-ground
practices across the ten metro regions. Xeriscape landscape design, for example, is not an active or standardized
practice in many of these cities. For those lacking good examples, we chose neighborhoods with a mix of low-
water vegetation and bare soil that seemed likely to be closest in performance to xeriscape. The La Paz and Lima
regions are lacking in urban forests, and for the urban forest analysis we by necessity chose vegetated riparian
canyons on the urban periphery. Shade-producing multistory built form is more common in Mediterranean
cities, where narrow streets, arcades, courtyards, and related urban form elements have been used for millennia
to enhance thermal comfort. Multistory buildings in Phoenix, by contrast, tend to stand alone among wider
streets and extensive surface parking, and so are unlikely to produce the same cooling effect.

5. Conclusion

In the era of anthropogenic climate change, keeping cities cool is a growing priority for human health, energy
conservation, and greenhouse gas mitigation reasons. Dryland urban regions face different challenges than cities
in wetter climates. This study confirms the absence of daytime urban heat islands for many dryland cities, and,
conversely, their presence at night. It also highlights the importance of considering building-scale and
neighborhood-scale temperature variations—and reducing temperatures at these scales—whether or not
regional UHIs exist. Our findings suggest limited correlations between vegetation and cooling for dryland cities
at the metropolitan scale, but stronger correlations at the neighborhood scale. The samples of urban multistory
landscapes we analyzed also showed the potential of this landscape type to assist in urban cooling. Xeriscape land
covers do not appear to have substantial cooling benefit, although they may be desirable for other reasons. A
main takeaway is that land covers mixing drought tolerant urban forestry and shade-maximizing built form may
help cool dryland cities sustainably, given water limitation.

ORCIDiDs

John M Dialesandro ® https://orcid.org/0000-0002-9578-7998

References

Artis D A and Carnahan W H 1982 Survey of emissivity variability in thermography of urban areas Remote Sens. Environ. 12 313-29

Bowler D E, Buyung-Ali L, Knight T M and Pullin A S 2010 Urban greening to cool towns and cities: a systematic review of the empirical
evidence Landscape and Urban Planning 97 147-55

Cadenasso M L, Pickett S T A and Schwarz K 2007 Spatial heterogeneity in urban ecosystems: reconceptualizing land cover and a framework
for classification Front Ecol. Environ. 5 80-8

Chakraborty T and Lee X 2019 A simplified urban-extent algorithm to characterize surface urban heat islands on a global scale and examine
vegetation control on their spatiotemporal variability Int. J. Appl. Earth Obs. Geoinf. 74 269-80

Chander G, Markham B L and Helder D L 2009 Summary of current radiometric calibration coeffecients for Landsat MSS, TM, ETM+, and
EO-1 ALI sensors Remote Sens. Environ. 113 893-903

Chow W T, Pope RL, Martin C A and Brazel A ] 2011 Observing and modeling the nocturnal park cool island of an arid city: horizontal and
vertical impacts Theoretical and Applied Climatology 103 197-211

Connors J P, Galletti C Sand Chow W T 2013 Landscape configuration and urban heat island effects: assessing the relationship between
landscape characteristics and land surface temperature in Phoenix, Arizona Landscape Ecology 28 271-83

Coseo P and Larsen L 2014 How factors of land use/land cover, building configuration, and adjacent heat sources and sinks explain Urban
Heat Islands in Chicago Landscape and Urban Planning 125 117-29

Efthymiadis D A and Jones P D 2010 Assessment of maximum possible urbanization influences on land temperature data by comparison of
land and marine data around coasts Atmosphere 1 5161

Emmanuel R and Fernando H 2007 Urban heat islands in humid and arid climates: role of urban form and thermal properties in Colombo,
Sri Lanka and Phoenix, USA Climate Research 34 241

He B-J etal 2019 An approach to examining performances of cool/hot sources in mitigating/enhancing land surface temperature under
different temperature backgrounds based on Landsat 8 image Sustainable Cities and Society 44 41627

Heinl M, Hammerle A, Tappeiner U and Leitinger G 2015 Determinants of urban-rural land surface temperature differences—a landscape
scale perspective Landscape and Urban Planning 134 33—42

Imhoff M L, Zhang P, Wolfe R E and Bounoua L 2010 Remote sensing of the urban heat island effect across biomes in the continental USA
Remote Sens. Environ. 114 504—13

Jiménez-Mufioz ] C, Sobrino J A, Skokovi¢ D, Mattar C and Cristébal ] 2014 Land surface temperature retrieval methods from Landsat-8
thermal infrared sensor data IEEE Geosci. Remote Sens. Lett. 11 18403

Middel A, Hib K, Brazel A J, Martin C A and Guhathakurta S 2014 Impact of urban form and design on mid-afternoon microclimate in
Phoenix Local Climate Zones Landscape and Urban Planning 122 16-28

Nassar A K, Blackburn G A and Whyatt ] D 2016 Dynamics and controls of urban heat sink and island phenomena in a desert city:
development of alocal climate zone scheme using remotely-sensed inputs Int. J. Appl. Earth Obs. Geoinf. 51 76-90

Nassar A K, Blackburn G A and Whyatt ] D 2017 What controls the magnitude of the daytime heat sink in a desert city? Appl. Geogr. 80 1-14

Norton B A, Coutts A M, Livesley S J, Harris R J, Hunter A M and Williams N § 2015 Planning for cooler cities: a framework to prioritise
green infrastructure to mitigate high temperatures in urban landscapes Landscape and Urban Planning 134 127-38

Oke T R 1973 City size and the urban heat island Atmospheric Environment (1967) 7 769-79

11


https://orcid.org/0000-0002-9578-7998
https://orcid.org/0000-0002-9578-7998
https://orcid.org/0000-0002-9578-7998
https://orcid.org/0000-0002-9578-7998
https://doi.org/10.1016/0034-4257(82)90043-8
https://doi.org/10.1016/0034-4257(82)90043-8
https://doi.org/10.1016/0034-4257(82)90043-8
https://doi.org/10.1016/j.landurbplan.2010.05.006
https://doi.org/10.1016/j.landurbplan.2010.05.006
https://doi.org/10.1016/j.landurbplan.2010.05.006
https://doi.org/10.1890/1540-9295(2007)5[80:SHIUER]2.0.CO;2
https://doi.org/10.1890/1540-9295(2007)5[80:SHIUER]2.0.CO;2
https://doi.org/10.1890/1540-9295(2007)5[80:SHIUER]2.0.CO;2
https://doi.org/10.1016/j.jag.2018.09.015
https://doi.org/10.1016/j.jag.2018.09.015
https://doi.org/10.1016/j.jag.2018.09.015
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.1016/j.rse.2009.01.007
https://doi.org/10.1007/s00704-010-0293-8
https://doi.org/10.1007/s00704-010-0293-8
https://doi.org/10.1007/s00704-010-0293-8
https://doi.org/10.1007/s10980-012-9833-1
https://doi.org/10.1007/s10980-012-9833-1
https://doi.org/10.1007/s10980-012-9833-1
https://doi.org/10.1016/j.landurbplan.2014.02.019
https://doi.org/10.1016/j.landurbplan.2014.02.019
https://doi.org/10.1016/j.landurbplan.2014.02.019
https://doi.org/10.3390/atmos1010051
https://doi.org/10.3390/atmos1010051
https://doi.org/10.3390/atmos1010051
https://doi.org/10.3354/cr00694
https://doi.org/10.1016/j.scs.2018.10.049
https://doi.org/10.1016/j.scs.2018.10.049
https://doi.org/10.1016/j.scs.2018.10.049
https://doi.org/10.1016/j.landurbplan.2014.10.003
https://doi.org/10.1016/j.landurbplan.2014.10.003
https://doi.org/10.1016/j.landurbplan.2014.10.003
https://doi.org/10.1016/j.rse.2009.10.008
https://doi.org/10.1016/j.rse.2009.10.008
https://doi.org/10.1016/j.rse.2009.10.008
https://doi.org/10.1109/LGRS.2014.2312032
https://doi.org/10.1109/LGRS.2014.2312032
https://doi.org/10.1109/LGRS.2014.2312032
https://doi.org/10.1016/j.landurbplan.2013.11.004
https://doi.org/10.1016/j.landurbplan.2013.11.004
https://doi.org/10.1016/j.landurbplan.2013.11.004
https://doi.org/10.1016/j.jag.2016.05.004
https://doi.org/10.1016/j.jag.2016.05.004
https://doi.org/10.1016/j.jag.2016.05.004
https://doi.org/10.1016/j.apgeog.2017.01.003
https://doi.org/10.1016/j.apgeog.2017.01.003
https://doi.org/10.1016/j.apgeog.2017.01.003
https://doi.org/10.1016/j.landurbplan.2014.10.018
https://doi.org/10.1016/j.landurbplan.2014.10.018
https://doi.org/10.1016/j.landurbplan.2014.10.018

10P Publishing

Environ. Res. Commun. 1(2019) 081005 W Letters

Onishi A, Cao X, Ito T, Shi Fand Imura H 2010 Evaluating the potential for urban heat island mitigation by greening parking lots Urban
Forestry & Urban Greening 9 323-332

PengS S, Piao S, Zeng Z, Ciais P, Zhou L, Li L Z and Zeng H 2014 Afforestation in China cools local land surface temperature Proceedings of
the National Academy of Sciences 111 2915-19

Rchid A 2012 The effects of green spaces (palm trees) on the microclimate in arid zones, case study: Ghardaia, Algeria Energy Procedia 18
10-20

Schatz] and Kucharik CJ 2014 Seasonality of the urban heat island effect in Madison, Wisconsin Journal of Applied Meteorology and
Climatology 53 2371-86

Shen H, Huang L, Zhang L, Wu P and Zeng C 2016 Long-term and fine-scale satellite monitoring of the urban heat island effect by the fusion
of multi-temporal and multi-sensor remote sensed data: A 26-year case study of the city of Wuhan in China Remote Sensing of
Environment 172 109-25

SongJ and Wang Z H 2015 Impacts of mesic and xeric urban vegetation on outdoor thermal comfort and microclimate in Phoenix, AZ
Build. Environ. 94 558—68

Spronken-Smith R A and Oke T R 1998 The thermal regime of urban parks in two cities with different summer climates Int. J. Remote Sens.
1920852104

Verdonck M L, Demuzere M, Bechtel B, Beck C, Brousse O, Droste A and Van Coillie F 2019 The human influence experiment (part 2):
guidelines for improved mapping of local climate zones using a supervised classification Urban Science 3 27

Wang ZH, Zhao X, Yang] and SongJ 2016 Cooling and energy saving potentials of shade trees and urban lawns in a desert city Appl. Energy
161437-44

Zhou D, Xiao J, Bonafoni S, Berger C, Deilami K, Zhou Y and Sobrino J 2019 Satellite remote sensing of surface urban heat islands: progress,
challenges, and perspectives Remote Sensing 11 48

ZhouD, Zhao S, Liu S, Zhang L and Zhu C 2014 Surface urban heat island in China’s 32 major cities: spatial patterns and drivers Remote Sens.
Environ. 152 51-61

12


https://doi.org/10.1016/j.ufug.2010.06.002
https://doi.org/10.1016/j.ufug.2010.06.002
https://doi.org/10.1016/j.ufug.2010.06.002
https://doi.org/10.1016/j.egypro.2012.05.013
https://doi.org/10.1016/j.egypro.2012.05.013
https://doi.org/10.1016/j.egypro.2012.05.013
https://doi.org/10.1016/j.egypro.2012.05.013
https://doi.org/10.1175/JAMC-D-14-0107.1
https://doi.org/10.1175/JAMC-D-14-0107.1
https://doi.org/10.1175/JAMC-D-14-0107.1
https://doi.org/10.1016/j.buildenv.2015.10.016
https://doi.org/10.1016/j.buildenv.2015.10.016
https://doi.org/10.1016/j.buildenv.2015.10.016
https://doi.org/10.1080/014311698214884
https://doi.org/10.3390/urbansci3010027
https://doi.org/10.1016/j.apenergy.2015.10.047
https://doi.org/10.1016/j.apenergy.2015.10.047
https://doi.org/10.1016/j.apenergy.2015.10.047
https://doi.org/10.3390/rs11010048
https://doi.org/10.1016/j.rse.2014.05.017
https://doi.org/10.1016/j.rse.2014.05.017
https://doi.org/10.1016/j.rse.2014.05.017

	1. Introduction
	2. Methodology
	3. Results
	3.1. Metropolitan Scale
	3.2. Neighborhood scale

	4. Discussion
	5. Conclusion
	References



