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Abstract
Urban heat island (UHI) characteristics andmitigation strategies for dryland cities differ from those
forwetter urban regions.Whereas the latter typically see daytime surfaceUHIs, the rapid heating and
cooling of deserts surrounding arid cities often produces daytime ‘urban cool islands’ and nighttime
UHIs. Degrees of aridness, extent of vegetation, elevation, latitude, humidity, topography, and typical
building types are likely to influence drylandUHI dynamics. This study analyzes variations in thermal
effects atmultiple scales for 10 dryland urban regions representing varied geographies worldwidewith
an aim to establish a broader understanding of the spectrumofUHI patterns in dryland cities.We
usedGIS to assemble daytime andnighttime satellite imagery, determined land surface temperature
and vegetation at a 30-meter scale, and analyzed typical neighborhood-scale examples of six land cover
types in each region. The 10 regions showed large variation in thermal effects.We found a strong
daytime surfaceUHI in only one.Nighttime heat islands weremore pronounced.However, all regions
showed strong small-scale variation in temperature, averaging a 12.3 °Cdifference betweenmean top-
quintile and bottom-quintile surface temperatures. Samples of urban forest landscapes cooled
daytime temperatures an average of 5.6 °C compared tometro averages. Irrigated lawn andmultistory
building land cover samples also had a substantial cooling effect. Xeriscaped landscapes amplified
daytime heating. Our results indicate thatUHIs for dryland cities are unlikely to be reduced by
xeriscape strategies, but that shade-maximizing urban forestry and built formhold promise to reduce
heat islands.

1. Introduction

Urban heat islands (UHIs) often form in temperate climates as buildings and paved surfaces absorb and slowly
release solar radiation during the daily cycle,making cities warmer than surrounding vegetated rural landscapes
(e.g. Schatz andKucharik ). However, an emerging literature indicates thatUHI dynamics aremore complicated
for dryland cities, a category that includes arid, semi-arid, andMediterranean climates (Connors et al 2013,
Nassar et al 2016).While there are amultitude of studies that focus on temperate regions there are less that focus
on dryland regions and even fewer that do a global comparison.

This study analyzes howurban heat island effects vary across 10 dryland urban regions representing a range
of geographical environments worldwide.We determine differences between day and nightmean urban and
rural temperatures derived from satellite imagery, consider variation of temperatures at a detailed (30-meter)
scale within the urban area, and correlate land surface temperaturewith vegetation. To assess the impact that
certain built landscape types have on surface temperatures, we analyze representative samples of six land covers
in each region—urban forest, irrigated turf and tree, xeriscape, hardscape, urbanmultistory, and undeveloped
—and compare their temperature with the urban and ruralmean. Thesemethods, described further below,
allowus to draw conclusions related toways that urban temperatures, vegetation, and built form vary across a
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range of dryland urban regions, and potentially howurban heating andUHIs can bemitigated through
landscape planning.

Urban heat islands are the net result of several physical processes that include radiative, thermal,
aerodynamics andmoisture built form,materials, and vegetation. These processes include the absorption of
sunlight and re-radiation of heat by dark surfaces such as pavements and roofs; the reflectance of sunlight by
light-coloredmaterials; shading produced by trees and buildings; and evapotranspiration fromplants which
cools the surrounding air. The configuration of land covers within the urban environment influences these
dynamics (Middel et al 2014, Song andWang 2015).

UHIs can be identified through satellite land surface temperaturemeasurements or by onsitemeasurements
at 2-mpedestrian or tree-canopy level. They can also bemodeledwith computer software. Starting in the 1970s
researchers showed that dark surfaces tend to produce higher air and surface temperatures than the urbanmean
(Oke 1973), while green spaces tend to produce lower temperatures (Spronken-Smith andOke 1998,Onishi et al
, Chow et al 2011). Temperature differences between natural and anthropogenic land covers can vary by up to
5 °C for adjacent sites and up to 9 °Cbetween urban core and rural areas (Imoff et al 2010).

Although two-meter air temperaturesmay bemost relevant for human comfort, surface temperatures are
more frequently studied owing to the easy availability and comprehensiveness of satellite data. Surface
temperatures tend to showheatingmore strongly than air temperatures. They generally correlate with air
temperatures but do not directly correspond due to atmosphericmixing andmaterials properties as well as
technicalmeasurement issues (Zhou et al 2019).

Within the past decade several large-scale studies have documented a daytime ‘urban cool island’ effect for
many dryland cities as surrounding landscapes with sparse xeric vegetation, grasses, and dry soils warmmore
rapidly than urban surfaces (Imhoff et al 2010, Peng et al 2014, Chakraborty and Lee 2019). Surrounding deserts
then coolmore rapidly at night than urban pavement and rooftops, leading to nighttimeUHIs.However, the
case study literature suggests variability in this effect. Degrees of aridness, extent of vegetation, elevation,
latitude, humidity, and typical building types are likely to influence dryland urban heat island behaviors (Zhou
et al 2014,Heinl et al , He et al).

Research shows the importance of vegetated spaces such as lawns, parks, street trees, and green roofs in
reducing drylandUHIs through evapotranspiration and shade (Bowler et al 2010, Rchid 2012,Wang et al 2016).
However, conventional turf-and-tree landscapes require consistent irrigation. Xeric landscapes using native
and/or drought tolerant species use less water, but are likely to have less cooling effect since xeric species tend to
have thin foliage andminimize evapotranspiration (Connors et al 2013).

High-density urban parcels with buildings that create shade can reduce local heating (Emmanuel and
Fernando 2007, Norton et al 2015,Nassar et al 2016, 2017). Street width, building height, and tree canopy level
all affect this dynamic (Coseo and Larsen 2014). Urban heat islands inmost climates are prominent at night
because street canyons tend to trap heat in addition to urbanmaterials often experiencing a slower nighttime
cooling rate than natural surfaces (Connors et al 2013).

2.Methodology

We investigatedUHI behavior for dryland cities at three scales: themetropolitan region, the neighborhood, and
the 30-meter pixel scale available from satellite imagery.We chose a global convenience sample of 10 large
dryland urban regions selected to reflect a diversity of dryness, seasonality, urban growth, elevation, and built
form. These regions include hyper-arid, arid,Mediterranean,monsoonal, and dry high-altitude climates, but all
have an overall water deficit throughout the year and long annual periodswith no rain. Eight are located in the
northern hemisphere, and two in the southern.We defined urban boundaries for eachmetropolitan area using
city boundaries fromOpen StreetMap (https://www.openstreetmap.org). Surrounding each regionwe
established a 20 kilometer-wide rural buffer for comparison purposes as can be seen infigure 3. To enhance
uniformity, we removedwater bodies, as well as areas within 5 kmofwater bodies for all regions as it has been
found thatmarine influences can vary influence in degree of extent inland (Efthymiadis and Jones ), Elevations
exceeding 500 feet of the regionalmeanwere alsomasked out.

We acquired Landsat 8OLI andASTERdata (30-meter resolution) for daytime and nighttime hot-season
dates, and derived land surface temperature (LST) from these sources (table 1). Google Earth Engine, andQGIS
were utilized to acquire and process the imagery to Land surface temperatureWe sampled daytime data near 11
AM local time, and nighttime data near 10 PM.Areas that required two scenes to covermetro areaswere
mosaiced if scenes were captured on same day (i.e. same path for Landsat), but scenes fromdifferent Landsat
rowswere notmosaiced if theywere in different rows due to the temporal differences in scene capture time. For
regionswithmonsoonal influences, we chose dates close to the end of the dry season. At themetropolitan scale
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we extracted themean temperatures of the entire region,mean temperatures of upper and lower quintiles of 30-
meter pixels, andmean temperature of the surrounding rural areas.

We employed a broadly usedmethod that from the LandsatHandbook for LST retrieval. In thismethod,
only TOA (Top of Atmosphere) radiance andNDVI (NormalizedDifferenceVegetation Index) are required.
According to the handbook, the TOA radiance of thermal infrared band is converted to TOA (or at-sensor)
brightness temperature based on the formula (equation (1)) (Chander et al 2009, Jimenez-Munoz et al 2014):

l= +( ( )) ( )/ /Tsensor K1 ln K2 L 1 1

where Tsensor is the at-sensor brightness temperature inKelvin (K) and L is the TOA radiance inW/m2Srum.
For Landsat-8 TIRS, K1 is 774.89Wm−2 Srμm) andK2 is 1321.08 K for band 10 (USGS, n.d.).

The following equation (equation (2)) calculates the LST based on the brightness temperature obtain
previously (Artis andCarnahan 1982).

* *l a e= +(( ) ( )) ( )/ /LST Tsensor 1 Tsensor ln 2

where LST is the land surface temperature inKelvin (K),λ is thewavelength inmeters and=1.438×10−2 mK.
represents the surface emissivity which differs from various land cover types (Shen et al 2016). For ε, water
(NDVI<0)was assigned a value of 0.9925, urban impervious areas and bare soil (0 =<NDVI<0.15)were
assigned a value of 0.923, and vegetation (NDVI>0.727)was assigned a value of 0.986.Otherwise, therewas a
modeling relationshipwith theNDVI values through the following equation:

*e = + ( )) ( )1.0094 0.047 ln NDVI 3

For ASTER imagery we used the same conversion to surface brightness temperature as Landsat. The imagery
was then corrected to surface temperature using band 13 (10.6micrometers) because of the thermal bands
available for ASTER, band 13 lined up closest in spectral wavelength designation as that of Landsat 8OLI Band
10.

*
*

= +( )
( )) ( )
/ /LST band13 1.0094 10.6 band 13

14388 ln emissivity 4

To analyze neighborhood-scale effects, we usedGoogle Earth Engine to visually identify representative
samples exceeding one square kilometer in size of six different land cover types (seefigure 1).We elected to use
this domain expert approach to ensure near 100%accuracy, rather than employing amachine learning
classification algorithm such as theWorldUrbanDatabase Access Portal Tools (Verdonck et al 2019) to quickly
classify such areaswithmoderate accuracy (70%–85%). Our approachwas similar to that used by the
HERCULESmodel for classifying urban patches (Cadenasso et al 2007). The selected land covers were:

• UrbanMultistory: urban neighborhoodswith closely spaced buildings of three stories ormore, able to cast
substantial amounts of shade

• Irrigated Turf andTree: large areas of turfgrass with scattered trees (less than 25% tree canopy), including
parks, golf courses, playing fields, and residential neighborhoodswith sizable yards

• Xeriscape: developed areas with sparse, native and/or drought-tolerant vegetation, typically also including
substantial amounts of bare dirt

• Hardscape: low-rise urban environments with extensive impermeable surfaces such as streets, parking lots,
and rooftops

Table 1.Dates and source of thermal imagery.

City Day Night Day Image Night Image

Cairo 07/29/2017 08/08/2015 Landsat 8OLI Landsat 8OLI

Delhi 05/15/2017 08/04/2017 Landsat 8OLI ASTER

Dubai 07/28/2016 06/30/2017 Landsat 8OLI ASTER

LaPaz 11/24/2017 07/07/2018 Landsat 8OLI ASTER

Lima 05/10/2017 05/07/2018 Landsat 8OLI ASTER

LosAngeles 08/09/2016 07/08/2016 Landsat 8OLI Landsat 8OLI

Madrid 07/17/2017 06/25/2916 Landsat 8OLI Landsat 8OLI

MexicoCity 05/28/2016 05/17/2017 Landsat 8OLI Landsat 8OLI

Tehran 06/23/2017 06/09/2016 Landsat 8OLI ASTER

Phoenix 08/15/2017 08/12/2016 Landsat 8OLI Landsat 8OLI
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• Urban forest: areas with dense tree canopies (native and non-native) (>70%), typically found alongwaterways
or in densely vegetated parks

• Unbuilt: undeveloped land areas within or external to the urban area

Figure 1. Six neighborhood scale land cover types.
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To assess spillover temperature effects, we also formed one-kilometer buffers around these built landscape
samples and analyzed average temperature differences between the six land cover types, surrounding buffer
areas, and the urbanmean.

3. Results

3.1.Metropolitan Scale
At themetropolitan scale, we found that only one of the ten regions (MexicoCity) had an average daytime
surface temperature substantially higher (>2 °C) than the surrounding rural.mean, in the traditional urban heat
island pattern. Two of the regions (Dubai andMadrid) showed substantial daytime urban cool island effects
(temperatures>2 °Cbelow the ruralmean).Most of the regions had average temperatures close to the rural
mean, showing little overall daytimeUHI effect (See figure 2). At night three of the 10 regions had substantial
(>2 °C)UHI effects (Dubai, Tehran, andMadrid), whilefive others had lesser effects of around 1 °C.Delhi
exhibited no urban heat island pattern (<0.1 °C). Figure 3 presents a comparison of daytime and nighttime
urban heat island intensities. In all cases the standard deviation and range of temperatures were lower at night for
both urban and rural areas.We assume that this is a result of rapid daytime heating of certain landscape surfaces,
andmore gradual diffusion of thermal energy at night (Spronken-Smith andOke 1998).

Although some regions showed little overall surfaceUHI, particular locationswithin them experienced
strong heating and cooling during both day and night (Tables 3 and 4). The hottest quintile of 30meter pixel
surface temperatures was on average 5.2 °Cwarmer during daytimes than themean for rural lands.Meanwhile,
the coolest quintile of daytime surface temperatures was an average of 4 °C cooler than themean of non-urban
land (see tables 1 and 2). Themean difference across these 10 regions between the hottest and coolest quintiles of
surface pixel temperature was 12.3 °C.

Many regions showedweak 30-meter correlations between vegetation and lower surface temperatures.
However, the only statistically significant relationshipwas for rural areas near Cairo during the daytime. This
correlation is likely the product of dense agricultural development of theNile RiverDelta.

3.2. Neighborhood scale
At the neighborhood scale, different types of land cover appear to vary strongly in surface temperature compared
to themean for these regions (Figure 4). Our sample of urban forest land cover produced the greatest daytime
temperature reduction, an average decrease of 5.6 °C. In Phoenix, Arizona, the urban forest samplewas 16.5 °C
cooler than themetromean during daytime (Table 5). A surrounding one-kilometer buffer area around each
urban forest sample also experienced spillover cooling effects, with an average temperature reduction of 1.7 °C.
These cooling effects of urban forest land covers relative to the regionalmean disappeared at night (Table 6).

Figure 2.Daytime and nighttime surfaceUHImagnitudes for 10 dryland cities.
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Figure 3. Sample daytime and nighttime urban heat islandmaps (Madrid). Caption:MadridUrbanwith 20 kmbuffer surrounding
urbanmetro boundary. Thinly vegetated dry land outsideMadridwarmsmore rapidly during the day than urban landscapes. At night
the city retains heat while rural areas cool.

Figure 4.Daytime temperature variation by sample neighborhood-scale land cover for 10 regionsCaption: Different sample
neighborhood-scale land cover types have large daytime temperature differences (°C). Degree of variation differs by region.Urban
forests were generally coolest, and unbuilt and hardscaped land covers the hottest.
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Our irrigated turf and tree sample land covers also produced daytime cooling effects in all cities, an average
temperature reduction of 2.0 °C from themean. The spillover cooling impact wasweaker than for urban forests,
and nighttime temperature differences from the urbanmeanwere negligible.

Urbanmultistory land cover samples were cooler than the daytimemean in 7 of the 10metro regions, with
an average temperature reduction of 1.0 °C (Table 7). The strongest cooling effects were found inDubai, Cairo,
and Lima. Cooling effects disappeared formultistory samples inmost regions at night. ForDubai and La Paz,
urbanmultistory samples had substantially warmer nighttime temperatures than the urban average (Table 8).
However, thesemay have risen for contextual reasons: Dubai’s downtown is relatively near the PersianGulf,
which likelymoderates temperatures, and La Paz is at very high elevation, which leads to very rapid cooling of
unbuilt areas and a lowmean regional nighttime temperature.

Xeriscape land cover samples were generally warmer than the average daytimemetro temperature—an
average of 1.8 °C. Infive of the 10 regions, the sample of this land cover typewasmore than 2.4 °C above the
metromean.However, therewere few spillover effects to surrounding areas. At night xeriscape samples showed
no difference from regional average temperatures. Samples of unbuilt areas within themetro regionswere also
typically warmer than themean for these 10 dryland urban areas—an average of 1.4 °C.At night these samples
were cooler than themetromean—an average of 0.5 °C. Thesefindings are to be expected, as these samples
mirror rural arid landscapes with rapid daytime heating and nighttime cooling.We found the unbuilt sample for
MexicoCity to bemuch cooler than in the other regions during the daytime, whichmay be due tomore
extensive vegetation or topography.

4.Discussion

Our analysis confirms that dryland urban regions have substantially different surfaceUHI characteristics than
the literature has shown forwetter, temperate regions. Daytime urban cool islands are likely due to the rapid
heating characteristics of surrounding arid terrain. But this phenomenon shows high variability.Modest
nighttimeUHIs usually occur since rural arid landscapes coolmore rapidly than urban ones. The large variation
inmetro-scale thermal effects between these 10 dryland regions canmost likely be explained by factors such as

Table 2.Average top and bottomquintile daytime temperatures comparedwithmetro and ruralmeans (°C).

Cities

Rural

Mean (°C)
Metro

Mean (°C)
Upper 20%of 30 m

pixels (°C)
Lower 20%of 30 m

pixels (°C) Difference (°C)

Cairo 38.9 38.8 44.0 32.3 11.7

Delhi 38.4 38.4 43.0 32.6 10.4

Dubai 49.4 46.4 50.1 40.3 9.8

La Paz 30.9 32.0 37.5 28.7 8.8

Lima 26.3 26.8 29.2 20.2 9.0

Los Angeles 36.6 37.1 42.0 26.9 15.1

Madrid 41.7 39.5 46.2 33.3 12.9

MexicoCity 28.9 32.3 38.2 18.6 19.6

Tehran 43.8 39.8 45.7 32.8 12.9

Phoenix 40.6 44.3 52.5 38.8 13.7

Average 37.6 37.5 42.8 30.5 12.3

Table 3.Average top and bottomquintile night temperatures comparedwithmetro and ruralmeans.

Cities

Rural

Mean (°C)
Metro

Mean (°C)
Upper 20%Lower of 30 m

pixels(°C)
20%of pixels 30 m

pixels(°C) Difference (°C)

Cairo 25.6 26.5 28.3 24.8 3.5

Delhi 24.2 25.6 28.4 22.7 5.7

Dubai 24.2 26.2 29.6 23.1 6.5

La Paz 2.5 3.0 4.5 −3.2 7.7

Lima 15.6 14.6 17.2 12.8 4.4

Los Angeles 16.4 17.7 21.5 14.7 6.8

Madrid 21.3 23.4 26.4 17.7 8.7

MexicoCity 16.3 16.9 20.1 10.8 9.3

Phoenix 24.4 25.8 29.0 22.7 6.3

Tehran 19.5 22.6 24.8 19.8 5.0

Average 19.0 20.2 23.0 16.6 6.4
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Table 4. 10Dryland urban regions compared.

Urban region Climate (koppen) Precip. (mm) Elev (m)
Pop.

(mil.) Pop.Density (per./km2)
Average hottestmonth

humidity

Average daytime temp. diff.

urban/rural

Average nighttime temp. diff.

urban/rural

Cairo HotDesert (BWh) 24.7 25 20.4 38 636 58% 0.1 °C 0.9 °C
Delhi WarmSteppe (BSh) 800 230 26.5 17 857 33% 0.0 1.4

Dubai HotDesert (BWh) 201 10 5.6 1,363 56% −3.0 2.0

La Paz Subtropical High-

land (CWc)
564 3,640 2.7 5,720 43% 1.1 0.5

Lima MildDesert (BWn) 16 0–1,550 12.1 15 125 85% 0.5 −1.0

Los Angeles Mediterranean (Csb) 384 80 18.7 14,363 73% 0.5 1.3

Madrid Mediterranean (Csa) 436 730 6.7 11 093 35% −2.2 2.1

MexicoCity Subtropical Highland (Cwb) 820 2,450 20.9 14 074 43% 3.3 0.6

Phoenix HotDesert (BWH) 200 300 4.7 3,500 32% 0.5 1.4

Tehran Cool Semiarid (BSK) 220 1,650 8.7 11 918 31% −0.8 3.1

Gray=Temperature differences over 2 °C.
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Table 5.Daytime urban forest covers surface temperature compared to
metromean of entire area.

Region

Metro

mean

temp. (°C)

Urban forest

versusMean of

metro area (°C)

<1 km from veg.

versusmean of

metro area (°C)

Cairo 38.8 −5.5 −0.6

Delhi 38.4 −1.8 −2.0

Dubai 46.4 −5.2 0

La Paz 32.0 −3.6 −1.3

Lima 26.8 −2.4 −1.9

Los Angeles 37.1 −4.2 −0.9

Madrid 39.5 −6.0 −0.2

Mexico City 32.3 −3.6 +0.5

Phoenix 44.3 −16.5 −8.7

Tehran 39.8 −7.0 −2.2

AVERAGE 37.5 −5.6 −1.7

Caption: Urban forests are>2 °C cooler (dark gray) than the urban average
for 9 of 10 dryland regions studied, with cooling extending 1 kmbeyond

borders of vegetated space in some cities.

Table 6.Nighttime urban forest temperature compared tometromean.

Region

Metro

mean

temp. (°C)

Urban forest

versusmean of

metro area (°C)

< 1 km from

veg. versus

mean ofmetro

area (°C)

Cairo 26.5 −0.8 −0.5

Delhi 25.6 −0.6 0.5

Dubai 26.2 −0.7 −1.9

La Paz 3.0 1.0 0.8

Lima 14.6 0.1 0.1

Los Angeles 17.7 −0.7 0.8

Madrid 23.4 1.4 1.5

Mexico City 16.9 1.4 1.8

Phoenix 25.8 −0.1 −0.6

Tehran 22.6 0.2 0.1

AVERAGE 20.2 0.1 0.3

Table 7.Temperatures by land surface typewithin dryland urban regions (Daytime).

Region

Metro

mean

temp.

(°C)

Urban

Forest

versus

mean (°C)

Irrigated turf

and tree ver-

sus

mean (°C)

Urbanmultis-

tory versus

mean (°C)

Hard-

scape ver-

sus

mean

(°C)

Xeriscape/dirt

versus

mean (°C)

Unbuilt

versus

mean (°C) Rural (°C)

Cairo 38.8 −5.5 −3.3 −3.0 1.4 −0.1 0 38.9

Delhi 38.4 −1.8 −2.4 −0.6 2.2 0.2 0.8 38.4

Dubai 46.4 −5.2 −3.6 −4.3 3.0 0.4 2.0 49.4

La Paz 32 −3.6 4.2 −0.4 1.4 4.2 0.5 30.9

Lima 26.8 −2.4 −2.9 −2.3 −0.2 −0.3 1.3 26.3

L.A. 37.1 −4.2 −3.6 −0.5 −2.1 2.4 0.3 36.6

Madrid 39.5 −6.0 −3.4 0.7 −0.2 2.7 2.6 41.7

MexicoCity 32.3 −3.6 −1.9 −0.4 0.6 2.9 −4.3 28.9

Phoenix 44.3 −16.5 −0.5 2.9 1.5 2.9 5.0 43.8

Tehran 39.8 −7.0 −4.9 −1.9 2.4 1.6 5.6 40.6

AVERAGE 37.5 −5.6 −2.2 −1.0 1.0 1.8 1.4

Caption:Urban forests, irrigated turf and tree landscapes, and somemultistory built landscapes havemore than 2 °C cooler surface

temperatures (light gray) than themean during daytime for the sampled land covers. Hardscaped, xeriscaped, and unbuilt landscape surface

temperatures are often substantially hotter (dark gray) than themean.

9

Environ. Res. Commun. 1 (2019) 081005



degree of aridity, extent of vegetation, elevation, humidity, latitude, topography, and typical building types.
However, interactions between these factors are likely complex and a large sample would be required to
statistically tease out individual variables responsible for such differences, if that in fact could be done.However,
even though surfaceUHIsmay not exist for dryland urban regions ormay bemild, our analysis shows strong
local variation in temperature at the 30-meter scale. This variation is likely due to dark surfacematerials such as
asphalt absorbing solar radiation, light colored surfaces reflecting solar energy, the production of shade by
structures, or vegetative cooling. These variations will affect human health and comfort, building cooling loads,
and social equity considerations.

The drylandmetro areas studied here do not show strong correlations between vegetation and temperature.
However, overall amounts of vegetation (especially tree canopy) are low inmost of these regions, and it is
possible that with higher levels of vegetation greater correlationswould be found.Whenwe examined sample
neighborhood-scale patches of urban forest, we found large cooling effects. One implication is that ambitious
regional urban forestry programsmight indeed help coolmetro areas. However, such programswould need to
takewater use for irrigation into account. Potentially, low-water tree species could be found thatwould yield
significant cooling when planted citywide.More investigation into low-water, shade-producing vegetation as
well as optimal configuration of green spaces for coolingwould be desirable.

The sample irrigated turf and tree landscapes we examined had somewhat smaller but still sizable reductions
in daytime surface temperature compared tometromeans. Use of this landscape strategywould need to be
balancedwithwater consumption. Turfgrass landscapes andwater-intensive broadleaf trees are also known to
increase local evapotranspiration and humidity, which can cool local landscapes but also traps heat at night.

Xeriscaped landscapes showed little ability to cool urban regions, and the samples we examinedwere in fact
hotter than the daytimemetromean inmost regions. Although these landscapesmay be desirable for other
reasons such as habitat, aesthetic value, andwater conservation, theywill probably not be able to help reduce
urban heat islands.

Shade-producing built form shows potential to reduce daytime urban heatingwhile improvingmicro-scale
human comfort by providing shadedwalkways, sidewalks, and courtyards. The samples of this land cover that
we examinedwere 1 °Ccooler thanmetromeans, even though their building types and surfacematerials were
usually conventional in nature. Architects, urban designers, and engineers seeking tomaximize the shade cast by
structures aswell as light-colored roof and pavingmaterialsmight be able to achieve even stronger daytime
cooling effects fromurbanmultistory development.

Our study has limitations that should bementioned. The spatial resolution of Landsat andASTER thermal
imagery is still relatively coarse, yielding 900 m2 pixels. Unfortunately, higher spatial resolution thermal imagery
is not available. Also, althoughwe attempted to remove noise in the data caused bywater bodies, proximity to
coasts, and elevation changes, wewere not able to do this completely. Even removing a 5 kmbuffer next to
shorelines from analysis in places such asDubai, Lima, and Los Angeles, urban temperatures were undoubtedly
affected to some extent bymaritime influences.

Table 8.Temperatures by Land Surface TypewithinDrylandUrbanRegions (Nighttime).

Region

Metro

mean

temp.

(°C)

Urban

Forest

versus

mean (°C)

Irrigated turf

and tree ver-

sus

mean (°C)

Urbanmultis-

tory versus

mean (°C)

Hard-

scape ver-

sus

mean

(°C)

Xeriscape/dirt

versus

mean (°C)

Unbuilt

versus

Mean (°C) Rural (°C)

Cairo 26.5 −0.8 0.5 1.2 1.4 0.3 −0.2 25.6

Delhi 25.6 −0.6 0.5 2.1 2.2 2.0 −1.1 24.2

Dubai 26.2 −0.7 −0.2 3.5 3.0 −0.3 −2.2 24.2

La Paz 3.0 1.0 −0.1 4.0 1.4 −0.6 3.8 2.5

Lima 14.6 0.1 −0.2 0 −0.2 −0.3 −0.1 15.6

Los Angeles 17.7 −0.7 −0.4 0.8 −2.1 −0.3 −0.6 16.4

Madrid 23.4 1.4 −1.5 1.5 −0.2 −0.4 −3.4 21.3

MexicoCity 16.9 1.4 0.7 1.1 0.6 0.8 0.1 16.3

Phoenix 25.8 −0.1 −0.1 −1.8 1.5 −0.8 1.0 24.4

Tehran 22.6 0.2 1.2 −0.4 2.4 1.4 −2.7 19.5

AVERAGE 20.2 0.1 0.0 1.2 1.0 0.2 −0.5

Caption:Differences are not as pronounced at night. In some regions urban buildings and pavement retain substantial surface heat at night

(dark gray). Although frequently hotter during the day in arid regions, unbuilt lands are often cooler at night (light gray) than the regional
mean temperature.
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Within the neighborhood-scale analysis some challenges arose with consistencies between on-the-ground
practices across the tenmetro regions. Xeriscape landscape design, for example, is not an active or standardized
practice inmany of these cities. For those lacking good examples, we chose neighborhoods with amix of low-
water vegetation and bare soil that seemed likely to be closest in performance to xeriscape. The La Paz and Lima
regions are lacking in urban forests, and for the urban forest analysis we by necessity chose vegetated riparian
canyons on the urban periphery. Shade-producingmultistory built form ismore common inMediterranean
cities, where narrow streets, arcades, courtyards, and related urban form elements have been used formillennia
to enhance thermal comfort.Multistory buildings in Phoenix, by contrast, tend to stand alone amongwider
streets and extensive surface parking, and so are unlikely to produce the same cooling effect.

5. Conclusion

In the era of anthropogenic climate change, keeping cities cool is a growing priority for human health, energy
conservation, and greenhouse gasmitigation reasons. Dryland urban regions face different challenges than cities
inwetter climates. This study confirms the absence of daytime urban heat islands formany dryland cities, and,
conversely, their presence at night. It also highlights the importance of considering building-scale and
neighborhood-scale temperature variations—and reducing temperatures at these scales—whether or not
regionalUHIs exist. Our findings suggest limited correlations between vegetation and cooling for dryland cities
at themetropolitan scale, but stronger correlations at the neighborhood scale. The samples of urbanmultistory
landscapes we analyzed also showed the potential of this landscape type to assist in urban cooling. Xeriscape land
covers do not appear to have substantial cooling benefit, although theymay be desirable for other reasons. A
main takeaway is that land coversmixing drought tolerant urban forestry and shade-maximizing built formmay
help cool dryland cities sustainably, givenwater limitation.
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