We would like to thank The California Endowment and the UC Davis College of Agricultural and Environmental Sciences for the financial support that made this report possible.
Acknowledgements

This report is a joint project of the Coalition on Regional Equity and the UC Davis Center for Regional Change.

CORE (Coalition on Regional Equity) is a coalition of community groups including affordable housing developers, environmentalists, transportation advocates, homeless and anti-poverty advocates, social service providers, organized labor, the faith community, civil rights organizations and health groups. CORE advocates for regional change that is equitable and sustainable and promotes public health for lower income people and communities of color in the greater Sacramento region. CORE is a project of the Sacramento Housing Alliance.

For more information, please visit www.equitycoalition.org.

The Center for Regional Change at UC Davis brings together faculty, students and communities to collaborate on innovative research to create just, sustainable and healthy regional change in California's Central Valley and Sierra Nevada.

For more information, please visit http://regionalchange.ucdavis.edu.

Contributors to this report

Chris Benner, UC Davis Center for Regional Change: Writing and Production of Final Report, Project Conceptualization
Kendra Bridges, Coalition on Regional Equity: Writing and Production of Final Report, Project Conceptualization, Creation of Map Prototypes
Ganlin Huang, UC Davis Center for Regional Change: Writing and Production of Final Report, Production of Report Maps
Jonathan London, UC Davis Center for Regional Change: Project Conceptualization
Shamus Roller, Coalition on Regional Equity: Editing of Final Report, Project Conceptualization
Constance Slider, Coalition on Regional Equity: Editing of Final Report, Project Conceptualization
Eric Schultheis, Legal Services of Northern California: Creation of Map Prototypes

Additionally, the CORE Steering Committee helped develop ideas for broad areas of examination.
Table of Contents

Executive Summary 6–9
Introduction 10–11
Demographics 12–31
Economic Opportunities 32–43
Housing .. 44–55
Education 26–63
Transportation 64–71
Health & Environment 72–75
Methods .. 77
<table>
<thead>
<tr>
<th>Section</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Demographics</td>
<td>14-28</td>
</tr>
<tr>
<td>Economic Opportunities</td>
<td>34-71</td>
</tr>
<tr>
<td>Housing</td>
<td>46-50</td>
</tr>
<tr>
<td>Education</td>
<td>58-63</td>
</tr>
<tr>
<td>Transportation</td>
<td>66-70</td>
</tr>
<tr>
<td>Health and Environment</td>
<td>74-75</td>
</tr>
</tbody>
</table>
Many of the challenges and opportunities facing our families and communities cannot be solved at a neighborhood or even city level. Whether it is access to jobs, quality education, adequate health services, or affordable housing, dynamics at a regional scale largely shape individual opportunities and challenges. Similarly, an increasingly large body of research is showing that the economic health of entire regions is shaped by levels of social equity, with more equality at a regional scale contributing to greater economic growth for all.¹

What are the patterns of social and economic opportunity in the Sacramento region? Are we growing more equitably, or becoming more unequal over time? In what areas are we improving and where are there areas of concern?

These are the basic questions that we attempt to answer in this report. The SCORECARD Baseline Report provides an overview of levels and patterns of opportunity and disparity in the region. This report is part of a longer term process dynamically linking community involvement with regional mapping and GIS analysis to support advocacy and organizing that promotes regional equity and health in the six county Sacramento region.

We examine patterns of development and change over time on a variety of issues that are critical for residents of the Sacramento region, providing detailed maps showing these patterns. Briefly, we find the following patterns:

Demographically, the Sacramento region is very diverse, with multiple different racial groups in different areas of the region. Latino and Asian populations are increasing numerically and as a percentage of the population in the region. Despite the diversity and relative spatial integration, there remains substantial racial segregation across the region, with city-suburban, rural-urban, and east-west differences clearly evident in the region. For example, since 1990, the overall population of the region has gone from 75% non-Hispanic white, to 57% non-Hispanic white, but portions of the eastern suburbs and large sections of rural areas in the region remain predominantly white.
Income levels are also distributed unequally across the region. While overall the median household income in census tracts throughout the region grew from $47,236 in 2000 to $48,377 in 2008, large portions of the region lag. These patterns are particularly pronounced when examining income levels by race, where large portions of the African American, Latino and Asian populations fall into the lowest income category in the region, making below $20,954 per household in 2000.

Poverty also remains a significant problem in the region, with poor communities concentrated in the urban neighborhoods of south Sacramento, Del Paso Heights, and in large portions of Yolo, Sutter and Yuba counties.
Education clearly emerges as one of the priority areas for attention in the region. Many studies have documented how important higher education is for improved economic opportunities. A community college degree generally leads to substantially higher incomes than having a high school degree. Yet our progress in expanding educational attainment in the region is critically slow. Overall there have been only slight improvements in educational attainment levels over the 1990-2008 period, with the proportion of the adult population with a Bachelor's Degree or higher growing from 23% to 25% and the proportion with less than a high school degree dropping from 18% to 17%. In large portions of south Sacramento in particular, the proportion of the population with low educational attainment has been increasing.

Patterns of **homeownership** in the region show relative stability overall, with an estimated 61% homeownership rate in the region in 2008, unchanged since 1990. Yet the patterns of homeownership vary dramatically by race across the region as well. For large portions of the region, homeownership rates for African Americans and Latinos were below 27% in 2000, much lower than the regional average. This is significant considering that homeownership remains a substantial mechanism for building wealth for many Americans.
In terms of transportation patterns, driving alone continues to dominate our region’s commuting patterns, with 74% of working people in 2000 driving by themselves to work, down only 1% from 1990. More people are driving further distances as well. In 2000 32% drove more than 30 minutes to work, up from 27% in 1990. Residents of the eastern suburbs of Sacramento and rural parts of Placer and El Dorado counties have the highest proportions of people driving more than 30 minutes to work.

Overall, Sacramento itself is a highly diverse city and county, with a higher percentage of the population having lower incomes, lower homeownership, and lower education levels than the regional average. Rural areas in the western and northern part of the region also face significant challenges, with high levels of poverty and educational attainment, and with a much higher concentration of Latino populations. In contrast, the suburbs and foothill communities to the east of Sacramento have disproportionately high concentrations of non-Hispanic whites, with higher income, education, and home ownership levels. A major concern is that these patterns of social and spatial inequality seem to be growing worse in many areas.

There is clearly need for substantial attention to promoting greater equity within the Sacramento region, and this will require strategies targeted at both urban and rural parts of the region.
This report uses both maps and narrative to describe the region. The report is divided into six broad sections: demographics, economic opportunity, housing, transportation, and environment.
Introduction

The Sacramento Coalition on Regional Equity Collaborative Assessment of Regional Development (SCORECARD) Baseline Regional Report provides an overview of the state of the Sacramento region in terms of distribution of opportunity and disparity, both geographically and racially. This report uses both maps and narrative to describe the region. The report is divided into six broad sections:

- **Demographics**: Presenting racial patterns of residence;
- **Economic opportunity**: Focusing on median household and income by race, and the spatial distribution of poverty;
- **Housing**: Focusing on home ownership by race, and distribution of households paying more than 30% of their income on rent;
- **Transportation**: Including proportion of population driving alone to work, and average commute times;
- **Environment**: Focusing on access to environmental amenities.

In all of the maps in this document, the unit of analysis is a census tract, which is one of the basic levels at which census data is gathered. Census tracts are designed to include approximately 5,000 people each. Using census tracts as a unit of analysis allows comparisons across what approximates a neighborhood level scale.

Each census tract is assigned to one of five different categories. The middle category includes those census tracts that are close to the overall average for the region (within half a standard deviation above or below the regional average). We then have two categories that are somewhat higher and lower than average (between .5 and 1.5 standard deviations from the average). The final two categories are for those census tracts that are much higher or lower than the regional average (more than 1.5 standard deviations away from the average), demonstrating high levels of difference from the regional average. The standardization of categories makes it simpler to compare patterns of disparities across multiple indicators and time periods, and to easily spot those areas of the region that significantly diverge from the regional average.
When viewed as a whole, the Sacramento region is remarkably diverse and integrated.
Demographics

When viewed as a whole, the Sacramento region is remarkably diverse and integrated. In 2002, responding to a request by Time Magazine, the Harvard Civil Rights Project determined that the City of Sacramento itself was the most diverse city in the U.S. This was partially based on the relatively even representation of the major racial groupings. The analysis was also partially based on the relatively low levels of racial segregation compared to other cities.

Yet, from a regional perspective it is clear that while we have a diverse population in the region, we still face substantial racial segregation in where people live.

In 2008, in the average census tract in the region, 57% of the population were white, down from 75% in 1990. The places in the region that have disproportionately high white populations are virtually all east of the city of Sacramento—in the suburbs along the American River and the foothills to the east and north east of the city.

In contrast, the Latino population, which on average accounted for 19% of the population in each census tract in 2008 (up from 11% in 1990) lives disproportionately in the western parts of the region, particularly in the agricultural areas of western Yolo, Sutter and Yuba counties.

The African American population is highly concentrated in the urban core, with large populations in south Sacramento and the Del Paso Heights area in northern Sacramento. The African American population grew slightly from an average of 6% of the region’s population in 1990 to an estimated 7% in 2008.

The Asian population is also highly concentrated in particular places in the region, predominantly in south Sacramento and in certain areas of Yuba City in Sutter County. In 1990, the population of the average census tract was 7% Asian, which rose to 11% by 2008.

The Native American population remained almost unchanged between 1990 and 2008 at 1.1% of the population. There are certain neighborhoods in Sacramento itself, and the far rural areas of Yuba County which show particularly high concentrations of Native American populations.

The percentage of the population that is foreign born in the average census tract in the region grew from 9% in 1990 to 14% in 2000. Large portions of south Sacramento have substantially higher proportions of foreign born population, with some census tracts reaching 46% of the population born abroad.
Percent of White Population by Census Tract 1990

Percent of Non-Hispanic White people (compared with the region)
Regional average: 75%
Standard deviation: 20%

- 85% - 98% (higher than average)
- 66% - 84% (close to average)
- 46% - 65% (lower than average)
- 17% - 45% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Ganlin Huang.
Percent of White Population by Census Tract 2008

Percent of Non-Hispanic White people (compared with the region)
Regional average: 57%

- 87% - 88% (much higher than average)
- 67% - 66% (higher than average)
- 47% - 66% (close to average)
- 27% - 46% (lower than average)
- 10% - 26% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 and 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map. The average of this dataset is 0.566706. The standard deviation is 0.195456.

Map created November 2009 by Ganlin Huang.
Change in Percent of White Population by Census Tract 1990 - 2008

Change in percent of Non-Hispanic White people (compared with the region)
Regional average: -18%
Standard deviation: 8%

-6% - 7% (much higher than average)
-14% - -6% (higher than average)
-22% - -14% (close to average)
-29% - -22% (lower than average)
-44% - -29% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 and 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.
Percent of Latino Population by Census Tract 1990

Percent of Latino people (compared with the region)
Regional average: 11%
Standard deviation: 9%

- 25% - 46% (much higher than average)
- 17% - 24% (higher than average)
- 8% - 16% (close to average)
- 0% - 7% (lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Ganlin Huang.

0 10 20 40
Miles

Highway
Counties
Lakes

UCDAVIS
CENTER FOR REGIONAL CHANGE

CORE
COALITION EN REGIONAL EQUITY
Change in Percent of Latino Population by Census Tract 1990 - 2008

Change in percent of Latino people (compared with the region)
Regional average: 7%
Standard deviation: 6%

- 17% - 33% (much higher than average)
- 10% - 17% (higher than average)
- 4% - 10% (close to average)
- -2% - 4% (lower than average)
- -13% - -2% (much lower than average)

A standard score, called a z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much higher than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 and 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all categories are present in a map.

Map created January 2010 by Ganlin Huang.
Percent of African American Population by Census Tract 1990

Percent of African American people (compared with the region)
Regional average: 6%
Standard deviation: 8%
- 19% - 46% (much higher than average)
- 11% - 18% (higher than average)
- 3% - 10% (close to average)
- 0% - 2% (lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.6, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Ganlin Huang.
Percent of African American Population by Census Tract 2008

Percent of African American people (compared with the region)
Regional average: 7%
Standard Deviation: 8%
- Purple: 18% - 35% (much higher than average)
- Pink: 11% - 17% (higher than average)
- Yellow: 3% - 10% (close to average)
- Light yellow: 0 - 2% (lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.6, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created November 2009 by Ganlin Huang.
Change in Percent of African American Population by Census Tract 1990 - 2008

Change in percent of African American people (compared with the region)
Regional average: 1%
Standard deviation: 4%
- 8% - 17% (much higher than average)
- 3% - 7% (higher than average)
- -1% - 3% (close to average)
- -4% - -1% (lower than average)
- -18% - -4% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as “much lower than average” if a z-score is below -1.5, “lower than average” as between -1.5 and -0.5, “close to average” as between -0.5 and 0.5, “higher than average” as between 0.5 and 1.5, and “much higher than average” as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Ganlin Huang.

UC DAVID CENTER FOR REGIONAL CHANGE
CORE COALITION EN REGIONAL EQUITY
Percent of Asian Pacific Population by Census Tract 1990

Percent of Asian Pacific people (compared with the region)
Regional average: 7%
Standard deviation: 8%

- 20% - 50% (much higher than average)
- 12% - 15% (higher than average)
- 4% - 11% (close to average)
- 0% - 3% (lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Gailin Huang.
Percent of Asian Pacific Population by Census Tract 2008

Percent of Asian Pacific people (compared with the region)
Regional average: 11%
Standard deviation: 10%

- 27% - 49% (much higher than average)
- 17% - 26% (higher than average)
- 7% - 16% (close to average)
- 0% - 6% (lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Ganlin Huang.
Change in Percent of Asian Pacific Population by Census Tract 1990 - 2008

Change in percent of Asian Pacific people (compared with the region)
Regional average: 4%
Standard deviation: 5%
- 12% - 32% (much higher than average)
- 7% - 12% (higher than average)
- 2% - 7% (close to average)
- -4% - 2% (lower than average)
- -9% - -4% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 and 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Ganlin Huang.
Percent of Native American Population by Census Tract 1990

Percent of Native American people (compared with the region)
Regional average: 1.1%
Standard deviation: 0.9%
- 3% - 7% (much higher than average)
- 3% - 2% (higher than average)
- 2% (close to average)
- 0% - 1% (lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 and 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Ganlin Huang.
Percent of Foreign Born Population by Census Tract 1990

Percent of foreign born people (compared with the region)
Regional average: 9%
Standard deviation: 7%

- 20% - 48% (much higher than average)
- 14% - 19% (higher than average)
- 7% - 13% (close to average)
- 0% - 6% (lower than average)

Legend:
- Highway
- Counties
- Lakes

Map created January 2010 by Ganlin Huang.
Percent of Foreign Born Population by Census Tract 2000

Percent of foreign born people (compared with the region)
Regional average: 14%
Standard deviation: 9%
- 28% - 46% (much higher than average)
- 20% - 27% (higher than average)
- 11% - 19% (close to average)
- 2% - 10% (lower than average)
- 0 - 1% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created September 2009 by Santin Huang.
Change in Percent of Foreign Born Population by Census Tract 1990-2000

Change in percent foreign born people (compared with the region)
Regional average: 9%
Standard deviation: 7%
- 14% - 30% (much higher than average)
- 9% - 13% (higher than average)
- 3% - 8% (close to average)
- -3% - 2% (lower than average)
- -13% - -4% (much lower than average)

Transportation, Counties, Lakes

Map created January 2010 by Ganlin Huang.

Disparities in economic circumstance are prevalent, with relatively affluent areas in the region being predominantly white and poorer areas being predominantly people of color.
Across the Sacramento region, location is closely linked to economic opportunity. Disparities in economic circumstance are prevalent, with relatively affluent areas in the region being predominantly white and poorer areas being predominantly people of color.

Overall in 2000, the region had a median household income of $47,236, meaning that half the households earned more and half earned less than this amount. By 2008, this had risen to $48,377. Most of the neighborhoods in the City of Sacramento had median household income levels lower than this regional level. The neighborhoods with the highest median incomes were in the eastern and northeastern suburbs of Sacramento and the foothills of El Dorado County.

When median household income is compared for households of different races and in different areas of the region, patterns of economic disparity become apparent. Both African American and Latino households are concentrated in the lowest median household income category (shown in red on the maps) more often than white and Asian households. While there are a few areas in the eastern suburbs with high median incomes among Latino households, in most parts of the region median income amongst the Latino population is lower than the regional average, with pockets of communities in Sacramento and the Yuba City/Marysville area with median incomes much lower than the regional average. Similarly, median household incomes for African American households fall into the very lowest category in much of Sacramento itself.

The map for the Asian population reflects a certain degree of bifurcation. In certain parts of the region, particularly north east of Sacramento and the southern portions of Sacramento County, the median household income for Asian households falls into the highest category. Yet in much of Sacramento itself, and in Sutter and Yuba counties, the median income for Asian families falls into the very lowest category for the region.

The disparity in patterns of racial income levels are also reflected in a map of the percent of population living below 200% of the Federal Poverty Line (a more reasonable measure of economic hardship than the official poverty line, which understates economic hardship). In 2000, 200% of the poverty line equaled $34,100 for a family of four, or $16,700 for a single individual. On average in the region 30% of the population lived below this income threshold in 2000, up from 28% in 1990. But for large sections of southern and northern Sacramento city, and in Yuba City/Marysville, over 57% of the households were living on less than 200% of the federal poverty line, and these patterns have changed little since 1990.

Substantial pockets of poverty exist in both urban and rural parts of the region, with poor communities concentrated in south Sacramento, Del Paso Heights, and large portions of Yolo, Sutter and Yuba counties. There are patterns of substantial racial inequality in income levels.
Median Household Income by Census Tract 2000

Median household income (USD) (compared with the region)
Regional average: 47,236
Standard deviation: 17,521

- 73,518 - 128,578 (much higher than average)
- 55,997 - 73,517 (higher than average)
- 38,476 - 55,996 (close to average)
- 20,955 - 38,475 (lower than average)
- 8,292 - 20,954 (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created September 2009 by Gantlin Huang.
Median Household Income by Census Tract 2008

Median household income (USD), compared with the region
Regional average: 48,377
Standard deviation: 17,309

- 73,895 - 98,782 (much higher than average)
- 56,586 - 73,894 (higher than average)
- 39,276 - 56,585 (close to average)
- 21,966 - 39,275 (lower than average)
- 10,319 - 21,965 (much lower than average)
- No data

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 and 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created October 2009 by Ganlin Huang.
Median Household Income for Non-Hispanic White by Census Tract 2000

Median household income (USD) Non-Hispanic White
(compared with the region)
Regional average for whole population: 47,236

- 73,158 - 96,838 (much higher than average)
- 55,997 - 73,157 (higher than average)
- 38,476 - 55,996 (close to average)
- 20,955 - 38,475 (lower than average)
- 0 - 20,954 (much lower than average)

For comparison purpose, this map uses the same categories as "Median Household Income by Census Tract 2000".
Median Household Income for Latino by Census Tract 2000

Median household income (USD) Latino
compared with the region
Regional average for whole population: 47,236

- 73,158 - 98,565 (much higher than average)
- 55,997 - 73,157 (higher than average)
- 38,476 - 55,996 (close to average)
- 20,955 - 38,475 (lower than average)
- 0 - 20,954 (much lower than average)

For comparison purpose, this map uses the same categories as "Median Household Income by Census Tract 2000".

Map created October 2009 by Ganlin Huang.

Median Household Income for African American by Census Tract 2000

Median household income (USD) for African American (compared with the region)
Regional average for whole population: 47,236

- 73,158 - 98,565 (much higher than average)
- 55,997 - 73,157 (higher than average)
- 38,476 - 56,996 (close to average)
- 20,955 - 38,475 (lower than average)
- 0 - 20,954 (much lower than average)
- No African American population

Highway
- Counties
- Lakes

Map created September 2009 by Ganlin Huang

UCDAVIS CENTER for REGIONAL CHANGE
CORE COALITION ON REGIONAL EQUITY
Median Household Income for Asian by Census Tract 2000

Map created October 2009 by Ganlin Huang.

UCDAVIS CENTER for REGIONAL CHANGE

CORE COALITION EN REGIONAL EQUITY

Median household income (USD)
Asian (compared with the region)
Regional average for whole population: 47,236

- 73,518 - 96,237 (much higher than average)
- 55,997 - 73,517 (higher than average)
- 38,476 - 55,996 (close to average)
- 20,955 - 38,475 (lower than average)
- 0 - 20,954 (much lower than average)
- No Asian population
- Highway
- Counties
- Lakes

For comparison purpose, this map uses the same categories as "Median Household Income by Census Tract 2000".

Map created October 2009 by Ganlin Huang.
Median Household Income for Pacific Islander by Census Tract 2000

Median household income (USD)
Pacific Islander (compared with the region)
Regional average for whole population: 47,236

- 73,158 - 98,565 (much higher than average)
- 55,997 - 73,157 (higher than average)
- 38,476 - 55,996 (close to average)
- 20,955 - 38,475 (lower than average)
- 0 - 20,954 (much lower than average)
- No Pacific Islander population

For comparison purpose, this map uses the same categories as "Median Household Income by Census Tract 2000".

Map created October 2009 by Ganlin Huang.
Median Household Income for Native American by Census Tract 2000

Median household income (USD)
Native American
(compared with the region)
Regional average for whole population: 47,236

- 73,158 - 98,565 (much higher than average)
- 55,997 - 73,157 (higher than average)
- 38,476 - 55,996 (close to average)
- 20,955 - 38,475 (lower than average)
- 0 - 20,954 (much lower than average)
- No Native American population

Highway
Counties
Lakes

For comparison purpose, this map uses the same categories as "Median Household Income by Census Tract 2000".

Map created October 2009 by Ganlin Huang.

UCDAVIS
CENTER for REGIONAL CHANGE

CORE
Percent of Population below 200% Federal Poverty Line by Census Tract 2000

Percent of population below 200% Federal poverty line (compared with the region)
Regional average: 30%
Standard deviation: 18%

- 57% - 90% (much higher than average)
- 39% - 56% (higher than average)
- 21% - 36% (close to average)
- 4% - 20% (lower than average)
- 2% - 3% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "lower than average" if a z-score is below -1.5, "close to average" as between -1.5 and -0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created September 2009 by Ganttin Huang.
On average throughout the region 61% of housing units are owner-occupied, and this number has remained essentially the same since 1990.
The health and stability of individuals and families is closely tied to their homes. The cost of housing is one of the major expenses in people's lives, often consuming nearly 50% of the income of low income people.

In many areas large portions of the population are paying more than 30% of their income on rent. On average in the region, 39% of renting households paid more than 30% of their income on rent in 2000. In substantial portions of south Sacramento, upwards of 57% of renting households were paying more than 30% of their income on rent. Other areas with overburdened renters include Del Paso Heights, Yuba City, and rural parts of Yolo, Sutter, and Yuba Counties.

In addition to examining the cost of housing, examining patterns of homeownership can indicate neighborhood stability and economic prosperity. Homeownership provides a substantial mechanism for generating savings and accumulating wealth for the majority of the middle class.

On average throughout the region 61% of housing units are owner-occupied, and this number has remained essentially the same since 1990. Large portions of the region have somewhat higher than average homeownership rates. This is especially true in the eastern half of the region, which had between 72% and 93% homeownership rates in 2008. Near Galt in southern Sacramento County, and Lincoln in western Placer County, there are areas with upwards of 94% of the housing units owner-occupied. In contrast, in portions of midtown and north Sacramento, and in the Yuba City area, fewer than 27% of the housing units are owner-occupied.

Disparities in homeownership rates by race are immediately apparent in the following maps which show the percentage of heads of households of different racial groups that are living in their own owner-occupied units. In the average census tract in 2000, the home-ownership rate for non-Hispanic whites was 65%, 58% for Asians, 53% for Latinos, 47% for Pacific Islanders, 46% for African Americans and Asians. Areas with disproportionately low levels of homeownership rates tend to cluster in the same places for all racial groups: south Sacramento, Del Paso Heights area, Yuba City, and rural parts of Yolo, Sutter and Yuba counties.
Home Ownership Rate by Census Tract 2008

Home ownership rate (compared with the region)
Regional average: 61%
Standard deviation: 22%

- 94% - 96% (much higher than average)
- 72% - 93% (higher than average)
- 50% - 71% (close to average)
- 28% - 49% (lower than average)
- 0 - 27% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if the z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created November 2009 by Ganlin Huang.
Change in Percent Home Ownership Rate by Census Tract 1990 - 2008

Change in percent home ownership rate (compared with the region)
Regional average: 0
Standard deviation: 7%

- Green: 11% - 33% (much higher than average)
- Light Green: 4% - 10% (higher than average)
- Yellow: -3% - 3% (close to average)
- Light Yellow: -10% - -4% (lower than average)
- Orange: -35% - -11% (much lower than average)

Legend:
- Highway
- Counties
- Lakes

0 10 20 30 40 Miles

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -2.5, "close to average" as between -2.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Ganlin Huang.

UC DAVIS
CENTER FOR REGIONAL CHANGE

CORE
COALITION ON REGIONAL EQUITY
Home Ownership Rate for Non-Hispanic White by Census Tract 2000

Home ownership rate *
Non-Hispanic White (compared with the region)
Regional average: 61%

- 94% - 99% (much higher than average)
- 72% - 93% (higher than average)
- 50% - 71% (close to average)
- 28% - 49% (lower than average)
- 0% - 27% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map. The average of this dataset is 0.04694. The standard deviation is 0.212344.

Map created November 2009 by Ganlin Huang.

*Home ownership rate was calculated by dividing the housing units occupied by owners with the total occupied housing units.
Home Ownership Rate for Latino by Census Tract 2000

Home ownership rate* Latino
(compared with the region)
Regional average: 61%
- 94% - 100% (much higher than average)
- 72% - 93% (higher than average)
- 50% - 71% (close to average)
- 28% - 49% (lower than average)
- 0% - 27% (much lower than average)
No data

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map. The average of this dataset is 0.227631.

Map created November 2009 by Ganlin Huang.

*Home ownership rate was calculated by dividing the housing units occupied by owners with the total occupied housing units.
Home Ownership Rate for African American by Census Tract 2000

Home ownership rate*
African American
(compared with the region)
Regional average: 61%

- 94% - 100% (much higher than average)
- 72% - 93% (higher than average)
- 50% - 71% (close to average)
- 28% - 49% (lower than average)
- 0% - 27% (much lower than average)

No African American population
No data

Highway
Counties
Lakes

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset not all the categories are present in a map. The average of this dataset is 0.400266. The standard deviation is 0.347864.

*Home ownership rate was calculated by dividing the housing units occupied by owners with the total occupied housing units.

Map created November 2009 by Ganin Huang.
UCDAVIS CENTER FOR REGIONAL CHANGE
Home Ownership Rate for Asian by Census Tract 2000

Home ownership rate*
Asian
(compared with the region)
Regional average: 61%

- 94% - 100% (much higher than average)
- 72% - 93% (higher than average)
- 50% - 71% (close to average)
- 28% - 49% (lower than average)
- 0% - 27% (much lower than average)
- No Asian population
- No data

Home ownership rate was calculated by dividing the housing units occupied by owners with the total occupied housing units.

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map. The average of this dataset is 0.079872. The standard deviation is 0.321699.

Map created November 2009 by Ganlin Huang.

UC DAVIS CENTER FOR REGIONAL CHANGE

COALITION ON REGIONAL EQUITY
Home Ownership Rate for Native American by Census Tract 2000

Home ownership rate*
Native American (compared with the region)
Regional average: 61%

- 94% - 100% (much higher than average)
- 72% - 93% (higher than average)
- 50% - 71% (close to average)
- 28% - 49% (lower than average)
- 0% - 27% (much lower than average)

No Native American population
No data
Highway
Counties
Lakes

*Home ownership rate was calculated by dividing the housing units occupied by owners with the total occupied housing units.

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map. The average of this dataset is 0.451539. The standard deviation is 0.394358.
Home Ownership Rate for Pacific Islander People by Census Tract 2000

Home ownership rate*
Pacific Islander
(compared with the region)
Regional average: 61%

- 94% - 100% (much higher than average)
- 72% - 93% (higher than average)
- 50% - 71% (close to average)
- 28% - 49% (lower than average)
- 0% - 27% (much lower than average)
- No Pacific Islander population
- No data

Highway

Counties

Lakes

*Home ownership rate was calculated by dividing the housing units occupied by owners with the total occupied housing units.

Map created November 2009 by Garrin Huang.

UC DAVIS CENTER FOR REGIONAL CHANGE

CORE COLLABORATION ON RACIAL EQUITY
Percent of Renting Households Paying More than 30% Income on Rent by Census Tract 2000

Percent of renting households that pay more than 30% income on rent
Regional average: 39%
Standard deviation: 12%
- 57% - 81% (much higher than average)
- 45% - 56% (higher than average)
- 33% - 44% (close to average)
- 21% - 32% (lower than average)
- 0 - 20% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.
Not much headway has been made over the past two decades to improve educational outcomes in the region.
Education

Education provides a path to economic opportunity, as well as personal and professional growth, and is a building block of healthy communities. Educational attainment is a hallmark for determining how opportunity is distributed with the region, and demonstrates patterns of inequality.

In 2008, in the average census tract an estimated 25% of the population 25 years old or older had a Bachelor's Degree or higher. This was only slightly higher than 1990, nearly two decades earlier, when 23% of the population 25 years and older had a Bachelor's degree. Of the population over age 25, 17% did not have a high school diploma in 2008, down only 1% from 1990. Not much headway has been made over the past two decades to improve educational outcomes in the region.

The patterns of spatial disparity in these levels of education attainment closely mirror the patterns seen in income levels and homeownership rates. The areas with the largest concentrations of highly educated people are in the suburbs east and north east of Sacramento, while the areas with the lowest levels of educational attainment are concentrated in the City of Sacramento itself, and in rural portions Yolo County and western Sutter County.
Percent of Population with a Bachelor's Degree or Higher by Census Tract 1990

Percent of population age 25+ with a Bachelor's degree or higher (compared with the region)
Regional average: 23%
Standard deviation: 14%
- 46% - 75% (much higher than average)
- 32% - 45% (higher than average)
- 17% - 31% (close to average)
- 3% - 16% (lower than average)
- 0% - 2% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 and 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2009 by Ganlin Huang.

UCDAVIS CENTER for REGIONAL CHANGE
CORE COALITION EN REGIONAL EQUITY
Percent of Population with a Bachelor's Degree or Higher by Census Tract 2008

Percent of population age 25+ with a Bachelor’s degree or higher (compared with the region)
Regional average: 25%
Standard deviation: 15%
- 48% - 83% (much higher than average)
- 33% - 47% (higher than average)
- 17% - 32% (close to average)
- 2% - 16% (lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as “much lower than average” if a z-score is below -1.5, “lower than average” as between -1.5 and -0.5, “close to average” as between -0.5 and 0.5, “higher than average” as between 0.5 and 1.5, and “much higher than average” as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created November 2009 by Ganlin Huang.
Change in Percent of Population with a Bachelor's Degree or Higher by Census Tract 1990 - 2008

Change in percent of population age 25+ with a Bachelor's degree or higher (compared with the region)
Regional average: 2%
Standard deviation: 7%

- 14% - 34% (much higher than average)
- 7% - 13% (higher than average)
- 0% - 6% (close to average)
- -7% - -1% (lower than average)
- -24% - -8% (much lower than average)

Highway
Counties
Lakes

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Ganlin Huang.
Percent of Population with Less than a High School Diploma by Census Tract 1990

Percent of population age 25+ with less than a High School Diploma (compared with the region)
Regional average: 18%
Standard deviation: 12%
- 37% - 60% (much higher than average)
- 25% - 36% (higher than average)
- 13% - 24% (close to average)
- 0% - 12% (lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as “much lower than average” if a z-score is below -1.5, “lower than average” as between -1.5 and -0.5, “close to average” as between -0.5 to 0.5, “higher than average” as between 0.5 and 1.5, and “much higher than average” as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Ganlin Huang.
Percent of Population with Less than a High School Diploma by Census Tract 2008

Percent of population age 25+ with less than a High School Diploma (compared with the region)
Regional average: 17%
Standard deviation: 12%
- Red: 34% - 60% (much higher than average)
- Orange: 22% - 33% (higher than average)
- Yellow: 11% - 21% (close to average)
- Green: 1% - 10% (lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5.

Map created November 2009 by Ganlin Huang.
Change in Percent of Population with Less than a High School Diploma
by Census Tract 1990 - 2008

Change in percent of population age 25+
with less than a High School Diploma
(compared with the region)
Regional average: -1%
Standard deviation: 6%

- 9% - 24% (much higher than average)
- 3% - 8% (higher than average)
- -3% - 2% (close to average)
- -9% - -4% (lower than average)
- -28% - -10% (much lower than average)

A standard score, called z-score, is used to compare an individual sample
to the population. It is derived by subtracting the population mean from an
individual raw score and dividing the difference by the population standard
deviation. It is defined as "much lower than average" if a z-score is below
-1.5, "lower than average" as between -1.5 and -0.5, "close to average" as
between -0.5 and 0.5, "higher than average" as between 0.5 and 1.5, and
"much higher than average" as above 1.5. Due to distribution of each dataset,
not all the categories are present in a map.

Map created January 2010 by Ganlin Huang.
Not only are large percentages of people driving to work, but the length of their time spent driving is quite substantial.
After housing, transportation is the second largest expense incurred by most families. Transportation systems generally require significant public investment and reflect the priorities of government. Reducing the distance and amount that people travel by automobile is an important goal in improving our air quality and in reducing greenhouse gas emissions. Increasing the availability, quality and cost of transit is important in increasing economic opportunities for disadvantaged populations. Linking job centers with affordable housing locations is also critical for promoting cleaner, healthier, and more equitable communities and region.

In the Sacramento region, 74% of the population drove alone to work in 2000, down only 1% from 1990. Most areas of the region are not too far from this regional average, though again large portions of the east and northeast suburbs of Sacramento have upwards of 80% of the population driving alone to work. What is even more disturbing is that in large portions of the region, particularly in the north-eastern suburbs along with I-80 corridor, the proportion of people driving alone to work increased between 1990 and 2000. Not only are large percentages of people driving to work, but the length of their time spent driving is quite substantial. In the average census tract in the region, 32% of the population drove more than 30 minutes to get to work on a typical day in 2000, up from 27% in 1990. In the east and northeast suburbs, this is more typically 38 to 48% of the population. In many areas of the foothills of Placer and El Dorado counties, upwards of 50% of the population drive more than 30 minutes to work each day. This is a substantial contributor to poor air quality, greenhouse gas emissions, and overall environmental degradation.

The available data focuses on trips to work which comprise much less than half of the trips made. One of the areas needing more data and research is trips made for shopping, childcare, recreation and other reasons.
Percent of Working People Who Drive Alone to Work by Census Tract 1990

Percent of working people who drive alone to work
Regional average: 75%
Standard deviation: 9%
- Red: 90% - 100% (much higher than average)
- Orange: 80% - 89% (higher than average)
- Light Orange: 71% - 79% (close to average)
- Yellow: 62% - 70% (lower than average)
- Green: 21% - 61% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2019 by Geolin Huang

UCDAVIS CENTER for REGIONAL CHANGE

CORE COALITION ON REGIONAL INQUIRY
Percent of Working People Who Drive Alone to Work by Census Tract 2000

Regional average: 74%
Standard deviation: 10%

- 89% - 91% (much higher than average)
- 79% - 88% (higher than average)
- 69% - 78% (close to average)
- 59% - 68% (lower than average)
- 12% - 58% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 and 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created September 2009 by Ganlin Huang.
Change in Percent of Working People Who Drive Alone to Work
by Census Tract 1990 - 2000

Change in percent of working people who drive alone to work
Regional average: -1%
Standard deviation: 7%
- 11% - 20% (much higher than average)
- 4% - 10% (higher than average)
- -3% - 3% (close to average)
- -11% - -4% (lower than average)
- -43% - -12% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 and 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to a distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Guanlin Huang

UC Davis
Center for Regional Change
CORE
Coalition on Regional Equity
Percent of Working People Who Drive More than 30 Minutes to Work by Census Tract 1990

Percent of working people who drive more than 30 minutes to work
Regional average: 27%
Standard deviation: 11%
- 46% - 75% (much higher than average)
- 34% - 45% (higher than average)
- 23% - 33% (close to average)
- 11% - 22% (lower than average)
- 0% - 10% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Genlin Huang
Percent of Working People Who Drive More than 30 Minutes to Work by Census Tract 2000

Percent of working people who drive more than 30 minutes to work
Regional average: 32%
Standard deviation: 11%
- 49% - 78% (much higher than average)
- 38% - 48% (higher than average)
- 27% - 37% (close to average)
- 15% - 26% (lower than average)
- 8% - 14% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 and 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset, not all the categories are present in a map.

Map created September 2009 by Ganlin Huang.
Change in Percent of Working People Who Drive More than 30 Minutes to Work by Census Tract 1990 - 2000

Change in percent of working people who drive more than 30 minutes to work
Regional average: 5%
Standard deviation: 7%
- 16% - 45% (much higher than average)
- 9% - 15% (higher than average)
- 3% - 8% (close to average)
- -4% - 2% (lower than average)
- -20% - -5% (much lower than average)

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to the distribution of each dataset, not all the categories are present in a map.

Map created January 2010 by Genlin Huang.
The availability of environmental amenities, and exposure to environmental harms, are not distributed equally through the region.
The availability of environmental amenities, and exposure to environmental harms, are not distributed equally through the region. Areas that lack access to amenities such as parks and other open spaces may also be exposed to higher levels of environmental pollutants than their amenity-rich counterparts.

One environmental amenity we studied was the percent of land area covered by a tree canopy, which is often viewed as environmentally beneficial, and aesthetically beneficial as well. The average for the region is 74%, but this is somewhat skewed by the nearly 100% tree canopy coverage in the rural mountain areas of Placer, El Dorado and Yuba counties. From the map on the following page, it is clear that portions of the area east of Sacramento along the American River have high levels of tree canopy coverage, while agricultural areas of the region have relatively low levels of tree canopy cover.

The subsequent map shows the physical location of sites identified by the Environmental Protection Agency as being sources of toxics released into the environment, as part of their toxic release inventory (TRI). The color coding of the map shows the number of TRI sites within one mile of the census tract. Here, it is clear there are substantial concentrations of TRI sites along the I-50 corridor, and in southwestern Placer County, showing elevated levels of environmental harms faced by residents of these areas.

Subsequent versions of the SCORECARD will provide a broader range of health and environmental indicators of regional equity.
Percent of Tree Canopy by Census Tract 2000

Map created September 2009 by Shantin Huang.

UCDAVIS
CENTER for REGIONAL CHANGE

A standard score, called z-score, is used to compare an individual sample to the population. It is derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as "much lower than average" if a z-score is below -1.5, "lower than average" as between -1.5 and -0.5, "close to average" as between -0.5 to 0.5, "higher than average" as between 0.5 and 1.5, and "much higher than average" as above 1.5. Due to distribution of each dataset not all the categories are present in a map.
In all of the maps created for this report, census tracts were used as the basic unit of analysis. Six categories of indicators were developed: demographics, economic opportunities, housing, education, transportation and health and environment. Within each category, several indicators were selected and mapped out to show the difference in the region.

To break values into distinct categories, we employed a Z score to indicate the relationship between a tract and the region. A Z score compares an individual sample to the total population. It is a dimensionless quantity derived by subtracting the population mean from an individual raw score and dividing the difference by the population standard deviation. It is defined as “much lower than average” if a Z score is below -1.5, “lower than average” as between -1.5 and -0.5, “close to average” as between -0.5 to 0.5, “higher than average” as between 0.5 and 1.5, and “much higher than average” as above 1.5.

Using the map of poverty as an example to explain the Z score concept, the percent of population under 200% federal poverty line ranges from 2% to 90% in a tract. We first calculated Z scores for each tract, which ranged from -1.59671 to 3.3798. Then we divided all the tracts into five categories, using Z score values of 1.5, 0.5, -0.5 and -1.5 as cutting points. To make the map easy to read, we use percent of population instead of Z score values in the legend, and add brief descriptions about how the categories do compare with the region. In this way, when people see that a tract falls into the first category, not only they know it means this tract has 57% to 90% of the population living under 200% federal poverty line, but they also learn from our description that this rate is really high comparing with the whole region.

After we determine the Z scores, a value between 1 and 5 is assigned as the individual indicator score. A score of 5 indicates that the Z score is “much higher than average” for a desirable resource (such as tree canopy) or “much lower than average” for an undesirable resource (such as poverty). A score of 1 would indicate the other end of this value spectrum. Lastly, we take the average of all the individual indicator scores in one category as the index for that category.
References

Geolytics 2000.

Geolytics 2000.

Geolytics 2008.

Sacramento Regional Transit.
Regional Transit Google TransitTM Feed Specification.
Available at: http://www.sacrt.com/gtfs.stm

US Environmental Protection Agency 2006.
Toxics Release Inventory Dataset.
Available at: http://www.epa.gov/tri/tridata/index.htm

National Land Cover Dataset.
Endnotes

ii The SCORECARD (Sacramento Coalition on Regional Equity Collaborative Assessment of Regional Development) is a collaborative project between the UC Davis Center for Regional Change (CRC) and the Coalition on Regional Equity (CORE).

iv In 2000, the population of the City of Sacramento was 41% non-Hispanic white, 22% Latino, 16% Asian and 15% African American.

v Paying more than 30% of household income on housing expenses is considered unaffordable to most households, threatening other areas of necessary household spending such as food and health care.